भारतीय रेल Indian Railways पटियाला रेलइंजन कारख़ाना, पटियाला ## PATIALA LOCOMOTIVE WORKS, PATIALA LOCO TESTING & DISPATCH REPORT OF IGBT BASED wAg9hc ELECTRIC LOCOMOTIVE LOCO NO.: 42042 TYPE: WAG9HC Rail way shed: Cr/BSLL ProPulsion system: CGL Date of Dispatch: 22.06.2025 लोको निर्माण रिकार्ड ## पटियाला रेलइंजन कारख़ाना, पटियाला PATIALA LOCOMOTIVE WORKS, PATIALA LOCO NO.: 42042 **RAILWAY/SHED: CR/BSLL** DOD: June-2025 #### **INDEX** | SN | PARA | ACTIVITIES | PAGE NO. | | | | |-----|-------------------------------|---|----------|--|--|--| | | Testing & Commissioning (ECS) | | | | | | | 1. | 1.0 | | | | | | | | 1.1 | Continuity Test of Traction Circuit Cables | | | | | | | 1.2 | Continuity Test of Auxiliary Circuit Cables | 1-4 | | | | | | 1.3 | Continuity Test of Battery Circuit Cables | | | | | | | 1.4 | Continuity Test of Screened Control Circuit Cables | | | | | | 2. | 2.0 | Low Tension test | | | | | | | 2.1 | Measurement of resistor in OHMS (Ω) | 5-6 | | | | | | 2.2 | Check Points | 3-0 | | | | | | 2.3 | Low Tension Test Battery Circuits (without control electronics) | | | | | | 3 | 3.0 | Downloading of Software | | | | | | | 3.1 | Check Points | | | | | | | 3.2 | Download Software | 7-10 | | | | | | 3.3 | Analogue Signal Checking | | | | | | | 3.4 | Functional test in simulation mode | | | | | | 4 | 4.0 | Sensor test & convertor test | | | | | | | 4.1 | Test wiring Transformer Circuits – Polarity Test | | | | | | | 4.2 | Test wiring auxiliary transformer 1000V/415V-110V (pos. 67) | | | | | | | 4.3 | Primary Voltage Transformer | | | | | | | 4.4 | Minimum voltage relay (Pos. 86) | 11-16 | | | | | | 4.5 | Maximum current relay (Pos. 78) | 17.76 | | | | | | 4.6 | Test current sensors | | | | | | | 4.7 | Test DC Link Voltage Sensors (Pos 15.6/*) | | | | | | | 4.8 | Verification of Converter Protection Circuits (Hardware limits) | | | | | | | 4.9 | Sequence of BUR contactors | | | | | | 5. | 5.0 | Commissioning with High Voltage | | | | | | | 5.1 | Check List | | | | | | | 5.2 | Safety test main circuit breaker | | | | | | | 5.3 | Auxiliary Converter Commissioning | | | | | | | 5.3.1 | Running test of 3 ph. auxiliary equipments | | | | | | | 5.3.2 | Performance of Auxiliary Converters | 40.05 | | | | | | 5.3.3 | Performance of BURs when one BUR goes out | 16-25 | | | | | | 5.4
5.5 | Auxiliary circuit 415/110 | | | | | | | 5.5
5.6 | Hotel Load Circuit Treation Convertor Commissioning | | | | | | | 5.6
5.7 | Traction Converter Commissioning Test protective shutdown SP | | | | | | | 5.7
5.8 | Test protective shutdown SR Test Harmonic Filter | | | | | | | 5.6
5.9 | Test important components of the locomotive | | | | | | 6. | 6.0 | Running Trial of the locomotive | 25-26 | | | | | 7. | 7.0 | Final Check List to be verified at the time of Loco dispatch | 27 | | | | | 8. | 8.0 | Status of RDSO modifications | 28 | | | | | 9. | 1-10 | Pneumatic Test Parameters | 29 - 32 | | | | | 10. | | Loco Check Sheet(LAS) | 33 | | | | | 11. | - | Component History (LAS,ECS,ABS) | 34-36 | | | | | 12. | - | Component History & Testing Parameter (Bogie Shop) | 37 - 38 | | | | | 13 | - | Warranty Conditions as per Tenders | 39 -41 | | | | P.L.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC #### 1.0 Continuity Test of the cables Page: 1 of 27 #### 1.1 Continuity Test of Traction Circuit Cables As per cable list given in Para 1.3 of document no. 3 EHX 410 124, check the continuity with continuity tester and megger each cable to be connected between following equipment with 1000V megger. | From | То | Continuity
(OK/Not OK) | Prescribed
Megger Value (min) | Measured
Megger Value | |-------------------|---|---------------------------|----------------------------------|--------------------------| | Filter Cubicle | Transformer | oK | 100 ΜΩ | 750002 | | Filter Cubicle | Terminal Box of
Harmonic Filter
Resistor (Roof) | ok | 100 ΜΩ | 800me | | Filter Cubicle | Earthing Choke | OK | 100 ΜΩ | 800ms | | Earthing Choke | Earth Return
Brushes | ok | 100 ΜΩ | 750 ans | | Transformer | Power Converter 1 | OK | 100 ΜΩ | 800 ars | | Transformer | Power Converter 2 | ok | 100 ΜΩ | 700 MS | | Power Converter 1 | TM1, TM2, TM3 | ok | 100 ΜΩ | 800 ml | | Power Converter 2 | TM4, TM5, TM6 | OK | 100 ΜΩ | 900m2 | | Earth | Power Converter 1 | ok | 100 ΜΩ | 85°ona | | Earth | Power Converter 2 | ok | 100 ΜΩ | 750ms | ## 1.2 Continuity Test of Auxiliary Circuit Cables As per cable list given in Para 1.4 of document no. 3 EHX 410 124, check the continuity with continuity meter and megger each cable to be connected between following equipment with the help of 1000V megger. Signature of the JE/SSE/Harness Signature of the JE/SSE/Loco Cabling ## W.J.¶ (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 2 of 27 Doc.No.F/ECS/01 | From | То | Continuity(OK/
Not OK) | Prescribed
Megger Value
(min) | Measured
Megger Value | |-------------|-----------------------------|---------------------------|-------------------------------------|--------------------------| | Transformer | BUR1 | OK | 100 ΜΩ | 600m/L | | Transformer | BUR2 | Jok. | 100 M Ω | JAMMAL. | | Transformer | BUR3 | ou | 100 M Ω | KOD MS | | Earth | BUR1 | OK | 100 ΜΩ | 600M | | Earth | BUR2 | OK | 100 M Ω | Soo mr | | Earth | BUR3 | ole | 100 M Ω | 600 M/L | | BUR1 | HB1 | or | 100 MΩ | 100 mr | | BUR2 | HB2 | OK. | 100 ΜΩ | Looma | | HB1 | HB2 | O'L | 100 ΜΩ | 600 011 | | HB1 | TM Blower 1 | or | 100 ΜΩ | 600 M | | HB1 | TM Scavenge Blower 1 | OK. | 100 ΜΩ | 700 m/ | | HB1 | Oil Cooling Unit 1 | ok_ | 100 ΜΩ | 800 m | | HB1 | Compressor 1 | ML | 100 ΜΩ | 600 m | | HB1 | TFP Oil Pump 1 | 814 | 100 ΜΩ | 700 mr | | HB1 | Converter Coolant
Pump 1 | OK | 100 ΜΩ | 600 mr | | HB1 | MR Blower 1 | or | 100 ΜΩ | 600 M2 | | HB1 | MR Scavenge Blower 1 | ok | 100 ΜΩ | Sooma | | HB1 | Cab1 | ol- | 100 ΜΩ | 600 m2 | | Cab1 | Cab Heater 1 | OK | 100 ΜΩ | Jooms | | HB2 | TM Blower 2 | ok. | 100 ΜΩ | 600 m/2 | | HB2 | TM Scavenge Blower 2 | 80K | 100 ΜΩ | Commo | | HB2 | Oil Cooling Unit 2 | ok | 100 ΜΩ | | | HB2 | Compressor 2 | 014 | 100 ΜΩ | 700 Ma | | HB2 | TFP Oil Pump 2 | ole_ | 100 ΜΩ | 600 M/ | | HB2 | Converter Coolant Pump 2 | - Ok | 100 ΜΩ | 700 m | | HB2 | MR Blower 2 | gle_ | 100 ΜΩ | 600 Mg/2 | | HB2 | MR Scavenge Blower 2 | ok | 100 ΜΩ | 600 ML | | HB2 | Cab2 | - Bl | 100 ΜΩ | STO MA | | Cab2 | Cab Heater 2 | ok | 100 MΩ · | 600 MA | Doc.No.F/ECS/01 (Ref: WI/ECS/10) #### PATIALA LOCOMOTIVE WORKS, PATIALA Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU Locomotive No.: 42042 1.3 Continuity Test of Battery Circuit Cables Type of Locomotive: WAP-7/WAG-9HC Page: 3 of 27 Check continuity of following cables as per Para 2.3 of document no. 3 EHX 610 299 | From | То | Condition | Continuity
(OK/Not OK) | |-------------------------|--|--------------------------------|---------------------------| | Battery (wire no 2093) | Circuit breakers 110-
2, 112.1-1, 310.4-1 | By opening and closing MCB 112 | OK | | MCB 110 | Connector 50.X7-1 | By opening and closing MCB 110 | OK | | Battery (Wire no. 2052) | Connector 50.X7-2 | | OK | | SB2 (Wire no 2050) | Connector 50.X7-3 | | OK | | Close the MCB 112, 110, 112.1, and 310.4 and | Prescribed value | Measured | |--|-------------------|-----------------------| | measure the resistance of battery wires 2093, 2052, 2050 with respect to the loco earth. | > 0.5 MΩ | Value
MΩ | | Measure the resistance between 2093 & 2052, 2093 & 2050, 2052 & | Prescribed value: | Measured | | 2050 | > 50 MΩ | Value
<u>70</u> ΜΩ | Commission the indoor lighting of the locomotive as per Sheet No 7A & 7B. ## 1.4 Continuity Test of Screened Control Circuit Cables Check the continuity and isolation of the screen cable of the following circuits with the help of sheet no. mentioned against each as per document no. 3 EHX 610 299. | Screened control circuit cables for | Corresponding Sheet Nos. | Continuity & Isolation (OK/Not OK) | |-------------------------------------|--------------------------|------------------------------------| | Battery voltage measurement | 04B | OK | | Memotel circuit of cab1 &2 | 10A | OK | | Memotel speed sensor | 10A | OK OK | | Primary voltage detection | 01A, 12A | ø K | | Brake controller cab-1 & 2 | 06F, 06G | OK. | P.L.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with</u> <u>IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 4 of 27 | Master controller cab-1 &2 | 08C, 08D | OK | |---|----------|----------| | TE/BE meter bogie-1 & 2 | 08E, 08F | ØK | | Terminal fault indication cab-1 & 2 | 09F | OK | | Brake pipe pressure actual BE electric | 06H | o K | | Primary current sensors | 12B, 12F | OK | | Harmonic filter current sensors | 12B, 12F | oK | | Auxiliary current sensors | 12B, 12F | OK | | Oil circuit transformer bogie 1 | 12E, 12I | _ | | Magnetization current | 12C, 12G | <u> </u> | | Traction motor speed sensors (2 nos.) and temperature sensors (1 no.) of TM-1 | 12D | OK | |
Traction motor speed sensors (2nos) and temperature sensors (1 no.) of TM-2 | 12D | OK OK | | Traction motor speed sensors (2nos) and temperature sensors (1 no.) of TM-3 | 12D | o K | | Traction motor speed sensors (2 nos.) and temperature sensors (1 no.) of TM-4 | 12H | OK | | Traction motor speed sensors (2nos) and temperature sensors (1 no.) of TM-5 | 12H | øK | | Traction motor speed sensors (2nos) and temperature sensors (1 no.) of TM-6 | 12H | ок | | Train Bus cab 1 & 2 (Wire U13A& U13B to earthing resistance= | 13A | OK | | 10KΩ±±10%) | | | | UIC line | 13B | OK | | Connection FLG1-Box TB | 13A | øK. | سلعلجت ## br.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA ## <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC P Page: 5 of 27 #### 2.0 Low Tension test #### 2.1 Measurement of resistor in OHMS (Ω) Measure the resistances of the load resistors for primary voltage transformer, load resistors for primary current transformer and Resistor harmonic filter as per Para 3.2 of the document no. 3 EHX 610 279. | Name of the resistor | Prescribed value | Measured value | |--|----------------------|----------------| | Load resistor for primary voltage transformer (Pos. 74.2). | 3.9K Ω ± 10% | 3.9 KSL | | Resister to maximum current relay. | 1 Ω ± 10% | 12 | | Load resistor for primary current transformer (Pos. 6.11). | 3.3 Ω ± 10% | 3.32 | | Resistance harmonic filter (Pos 8.3). Variation allowed \pm 10% | WAP7 | WAP7 | | Between wire 5 & 6 | 0.2 Ω | 0.20 | | Between wire 6 & 7 | 0.2 Ω | 0.21 | | Between wire 5 & 7 | 0.4 Ω | 0.42 | | For train bus, line U13A to earthing. | 10 k Ω ± 10% | 10.0K SL | | For train bus, line U13B to earthing. | 10 k Ω ± 10% | 10.0KSZ | | Insulation resistance of High Voltage Cable from the top of the roof to the earth (by1000 V megger). | 200 ΜΩ | 300 MJL | | Resistance measurement earth return brushes Pos. 10/1. | ≤0.3 Ω | 0.2952 | | Resistance measurement earth return brushes Pos. 10/2. | ≤0.3 Ω | 0.2952 | | Resistance measurement earth return brushes Pos. 10/3. | ≤0.3 Ω | 0.2852 | | Resistance measurement earth return brushes Pos. 10/4. | ≤0.3 Ω | 0.30s2 | | Earthing resistance (earth fault detection) Harmonic Filter –I; Pos. 8.61. | 2.2 kΩ ± 10% | 2.2KD | | Earthing resistance (earth fault detection) Harmonic Filter –II; Pos 8.62. | 2.7 k Ω ± 10% | 2.7 KD | | Earthing resistance (earth fault detection) Aux. Converter; Pos. 90.3. | 3.9 k Ω ± 10% | 3.9 KD | | Earthing resistance (earth fault detection) 415/110V; Pos. 90.41. | 1.8 kΩ± 10% | 1.8 KD | | Earthing resistance (earth fault detection) control circuit; Pos. 90.7. | 390 Ω ± 10% | 39052 | | Earthing resistance (earth fault detection)
Hotel load; Pos. 37.1(in case of WAP5). | 3.3 k Ω ± 10% | NA | | Resistance for headlight dimmer; Pos. 332.3. | 10 Ω ± 10% | 100 | ## P.L.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) #### PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with</u> <u>IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Note: Page: 6 of 27 Make sure that the earthing brush device don't make direct contact with the axle housing, earth connection must go by brushes. #### 2.2 Check Points | Items to be checked | Remarks | | |--|------------|--| | Check whether all the earthing connection in roof and machine room as mentioned in sheet no. 22A is done properly or not. These earthing connections must be flexible and should be marked yellow & green | CHECKED OK | | | Check whether all the earthing connection between loco body and bogie is done properly or not. These cables must be flexible having correct length and cross section | CHECKED OK | | ### 2.3 Low Tension Test Battery Circuits (without control electronics) These tests are done with the help of the special type test loop boxes as per procedure given in Para 3.6 of the document no. 3 EHX 610 279 | Name of the test | Schematic used. | Remarks | |---|-----------------------------------|---| | Test 24V supply | Sheet 04F and other linked sheets | CHEALED OK | | Test 48V supply | Sheet 04F & sheets of group 09 | Fan supply to be checked. $\mathcal{O} \mathcal{K}$ | | Test traction control | Sheets of Group 08. | øK. | | Test power supply bus stations. | Sheets of Group 09. | Fan supply to be checked. OK | | Test control main apparatus | Sheets of Group 05. | oK. | | Test earth fault detection battery circuit by making artificial earth fault to test the earth fault detection | Sheet 04C | σK | | Test control Pneumatic devices | Sheets of Group 06 | OK | | Test lighting control | Sheets of Group 07 | oK | | Pretest speedometer | Sheets of Group 10 | oK | | Pretest vigilance control and fire system | Sheets of Group 11 | OK | | Power supply train bus | Sheets of Group 13 | OK | ## P.L.W (Ref: WI/ECS/10) Doc.No.F/ECS/01 ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: $42\sigma42$ 3.0 Downloading of Software Type of Locomotive: WAP-7/WAG-9HC Page: 7 of 27 | 3.1 Check Points. | Yes/No | |--|--------| | Check that all the cards are physically present in the bus stations and all the plugs are connected. | YES | | Check that all the fibre optic cables are correctly connected to the bus stations. | YES | | Make sure that control electronics off relay is not energized i.e. disconnect Sub-D 411.LG and loco is set up in simulation mode. | YES | | Check that battery power is on and all the MCBs (Pos. 127.*) in SB1 &SB2 are on | YES | 3.2 Download Software The software of Traction converter, Auxiliary converter and VCU should be done by commissioning engineer of the firm in presence of supervisor. Correct software version of the propulsion equipment to be ensured and noted: | Traction converter-1 software version: | 1.0.6.9 | |---|----------| | Traction converter-2 software version: | 1.0.6.9 | | Auxiliary converter-1 software version: | 1.0.1.0 | | Auxiliary converter-2 software version: | 2.0.10 | | Auxiliary converter-3 software version: | 3.0.1.0 | | Vehicle control unit -1 software version: | 60.0.18 | | Vehicle control unit -2 software version: | 6.0.0.18 | #### 3.3 Analogue Signal Checking Check for the following analogue signals with the help of diagnostic tool connected with loco. | Description | Signal name | Prescribed value | Measured
Value | |---|--|------------------------|-------------------| | Brake pipe pressure | FLG2;0101XPrAutoBkLn | 100% (= 5 Kg/cm2) | OK | | Actual BE electric | FLG2; AMSB_0201- Wpn BEdem | 100% (= 10V) | ОК | | TE/BE at 'o' position from both cab | FLG1; AMSB_0101- Xang Trans
FLG2; AMSB_0101- Xang Trans | Between 9% and 11% | 10% | | TE/BE at 'TE maximal'
position from both cab | FLG1; AMSB 0101- Xang Trans | Between 99 % and 101 % | 100% | | TE/BE at 'TE minimal' position from both cab | FLG1; AMSB_0101- Xang Trans FLG2; AMSB_0101- Xang Trans | Between 20 % and 25 % | 25 % | ## PL.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA ## <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 8 of 27 | TE/BE at 'BE maximal position from both cab | XangTrans
FLG2; AMSB_0101-
XangTrans | Between 99% and 101% | 100% | |---|--|---|--------| | TE/BE at 'BE Minimal position from both cab | XangTrans
FLG2; AMSB_0101-
XangTrans | Between 20% and 25% | 25% | | TE/BE at '1/3' position in TE and BE mode in both cab. | LT/BDEM>1/3
HBB2; AMS_0101-
LT/BDEM>1/3 | Between 42 and 44% | 44% | | TE/BE at '1/3'positior
in TE and BE mode in
both cab. | HBB1; AMS_0101-
LT/BDEM>2/3
HBB2; AMS_0101-
LT/BDEM>2/3 | Between 72 and 74% | 74% | | Both temperature
sensor of TM1 | SLG1; AMSB_0106-
XAtmp1Mot | Between 10% to 11.7% depending upon ambient temperature 0° C to 40° C | 21.0 | | Both temperature sensor of TM2 | SLG1; AMSB_0106-
Xatmp2Mot | Between 10% to 11.7% depending upon ambient temperature 0°C to 40°C | 22% | | Both temperature sensor of TM3 | SLG1; AMSB_0106-
Xatmp3Mot | Between 10% to 11.7% depending upon ambient temperature 0°C to 40°C | 20°C | | Both temperature sensor of TM4 | SLG2; AMSB_0106-
XAtmp1Mot | Between 10% to 11.7% depending upon ambient temperature 0°C to 40°C | 20°C | | Both temperature sensor of TM5 | SLG2; AMSB_0106-
Xatmp2Mot | Between 10% to 11.7% depending upon ambient temperature 0°C to 40°C | 20.5°c | | | Xatmp3Mot | Between 10% to 11.7% depending upon ambient temperature 0°C to 40°C | 21°c | #### M'Td PATIALA LOCOMOTIVE WÖRKS. PATIALA
Doc.No.F/ECS/01 (Ref: WI/ECS/10) <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 9 of 27 #### 3.4 Functional test in simulation mode Conduct the following functional tests in simulation mode as per Para 5.5 of document no.3EHX 610 281. through the Diagnostic tool/laptop: | Test Function | Result desired in sequence | Result | |----------------------------------|--|--------------| | | nesuit desired in sequence | obtained | | Emergency shutdown through | VCB must open. | obtained | | emergency stop switch 244 | Panto must lower. | CHECKED OK | | | T ditto mast lower. | Checkey OR | | Shut Down through cab activation | VCB must open. | | | switch to OFF position | Panto must lower. | CHECKED OK | | Converter and filter contactor | FB contactor 8.41 is closed. | | | operation with both Power | By moving reverser handle: | 1) | | Converters during Start Up. | Converter pre-charging contactor | V | | | 12.3 must close after few seconds. | | | | • Converter contactor 12.4 must close. \ | | | | Converter re-charging contactor | CHECKED OK | | | 12.3 must opens. | | | | By increasing TE/BE throttle: | | | | • FB contactor 8.41 must open. | • | | | • FB contactor 8.2 must close. | | | | $ullet$ FB contactor 8.1 must close. \int | | | Converter and filter contactor | | | | operation with both Power | The same detribution her to o | | | Converters during Shut Down. | • VCB must open. | | | | • Panto must lower. | | | | Converter contactor 12.4 must open. | T CHECKED OK | | · | FB contactor 8.1 must open. | , | | | FB contactors 8.41 must close. | · | | | FB contactor 8.2 must remain closed. | | | | · / | | | | / | | - W ## P.L.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with</u> <u>IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 10 of 27 | | | _ | |--|---|-------------| | Contactor filter adaptation by isolating any bogie | Isolate any one bogie through bogie cut out switch. Wait for self-test of the loco. | | | | Check that FB contactor 8.1 is open. | į | | | Check that FB contactor 8.2 is open. | TCHECKED OK | | | After raising panto, closing VCB, and | Checkey | | | setting TE/BE | V | | | • FB contactor 8.1 closes. | I | | | • FB contactor 8.2 remains open. | 1 | | Test earth fault detection battery | By connecting wire 2050 to | | | circuit positive & negative | earth, create earth fault | | | • | negative potential. | / | | | message for earth fault | 1 | | | By connecting wire 2095 | CHECKED OK | | | to earth, create earth | | | • | fault positive potential. | Å | | · | • message for earth fault | | | | / | | | Test fire system. Create a smoke in | When smoke sensor-1 gets | | | the machine room near the FDU. | activated then | 1 | | Watch for activation of alarm. | Alarm triggers and fault | 1 | | • | message priority 2 | | | | appears on screen. | | | | When both smoke sensor | CHECKED OK | | | 1+2 gets activated then | CILCACY OF | | | A fault message priority | | | | 1 appears on screen and | | | • | lamp LSF1 glow. | | | • • • | • Start/Running interlock occurs and | | | | TE/BE becomes to 0. | | | ime, date & loco number | Ensure correct date time and Loco | | | | number | OK | | | 1 | l l | #### (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA ## <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42 042 Type of Locomotive: WAP-7/WAG-9HC Page: 11 of 27 4.0 Sensor Test and Converter Test #### 4.1 Test wiring main Transformer Circuits Apply $198V_p/140V_{RMS}$ to the primary winding of the transformer (at 1u; wire no. 2 at surge arrestor and at 1v; wire no. 100 at earthing choke). Measure the output voltage and compare the phase of the following of the transformers. | Output
Winding nos. | Description of winding. | Prescribed Output Voltage & Polarity with input supply. | Measured output | Measured polarity | |-----------------------------------|---|--|---------------------|-------------------| | 2U ₁ & 2V ₁ | For line converter bogie 1
between cable 801A-
804A | 10.05V _p and same polarity | 10-05 Up | OK | | 2U ₄ & 2V ₄ | For line converter bogie 1
between cable 811A-
814A | 10.05V _p and same polarity | 16.04 Up | OK | | 2U ₂ & 2V ₂ | For line converter bogie 2
between cable 801B-
804B | 10.05V _p and same polarity | 10.05 Vp | OK | | 2U ₃ & 2V ₃ | For line converter bogie 2
between cable 811B-
814B | 10.05V _p and same polarity | 10.08Vp | οK | | 2U _B & 2V _B | For aux. converter 1
between cable 1103-
1117 (in HB1)
For Aux converter 2
between cable 1103-
1117 (in HB2) | 7.9V _p , 5.6V _{RMS}
and same
polarity. | 7.9 U1
5.6 VRMS) | σĽ | | 2U _F & 2V _F | For harmonic filter
between cable 4-12 (in
FB) | 9.12V _p ,
6.45V _{RMS} and
same polarity. | 4.10 UP
644VRMS] | OK | ## 4.2 Test wiring auxiliary transformer 1000V/415V-110V (pos. 67) Apply $141V_p$ / $100V_{RMS}$ to input of the auxiliary transformer at cable no 1203 –1117 and measure the output at | Description of wire no. | Prescribed Output Voltage & Polarity with input supply. | Measured output | Measured polarity | |-------------------------|--|-----------------|-------------------| | Cable no. 1218 - 1200 | 58.7V _p , 41.5V _{RMS} and opposite polarity. | 58.6 VP | 201 | | C-1-1- 4040 CE05 | | 41.5VRMS) | · OK | | Cable no. 1218 – 6500 | $15.5V_p$, $11.0V_{RMS}$ and opposite polarity. | 15.5VP | OK | 11.0 VRMSI ## PATIALA LOCOMOTIVE WORKS. PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042- Type of Locomotive: WAP-7/WAG-9HC Page: 12 of 27 #### 4.3 Primary Voltage Transformer Apply $250V_{\rm eff}/350V_{\rm p}$ by variac to roof wire 1 and any wire 0 and measure the magnitude and polarity of the output of the primary voltage transformer for both bogies as per the procedure specified and suggested by the traction converter manufacturer. Primary voltage measurement converters (Pos. 224.1/*) & catenary voltmeter (Pos. 74/*) This test is to be done for each converter. Activate cab in driving mode and supply $200V_{RMS}$ through variac to wire no 1501 and 1502. Monitor the following parameters through Diagnostic tool and in catenary voltmeter. | Signal name | Prescribed value in catenary voltmeter | Prescribed
value in
Micview | Monitored value in catenary voltmeter | Monitored value in SR diagnostic tool | |------------------|--|-----------------------------------|---------------------------------------|---------------------------------------| | SLG1 G 87-XUPrim | 25kV | 250% | 25 KV | 250% | | SLG2_G 87-XUPrim | 25 kV | 250% | 25KV | 250 % | Decrease the supply voltage below $140\ V_{RMS}$. VCB must open at this voltage. In this case the readings in Diagnostic Tool and catenary voltmeter will be as follows. | Signal name | Prescribed value in catenary voltmeter | Prescribed
value in
Micview | Monitored value in catenary voltmeter | Monitored value in SR diagnostic tool | |------------------|--|-----------------------------------|---------------------------------------|---------------------------------------| | SLG1_G 87-XUPrim | 17kV | 170% | 17KV | 170 % | | SLG2_G 87-XUPrim | 17 kV | 170% | 17KV | 170 % | Reactivate VCB to on by increasing this voltage to 175% (17.5 kV). Increase the supply to 240 V_{RMS} through variac. VCB must open at this voltage, In this case the readings in **diagnostic tool** and catenary voltmeter will be as follows: | Signal name | Prescribed value in catenary voltmeter | Prescribed value in Micview | Monitored value in catenary voltmeter | Monitored
value in SR
diagnostic
tool | |------------------|--|-----------------------------|---------------------------------------|--| | SLG1_G 87-XUPrim | 30kV | 300% | 30KV | 300% | | SLG2_G 87-XUPrim | 30 kV | 300% | 30 KV | 300 % | Reactivate VCB to on by decreasing this voltage to 290% (29 kV). ## P.L.M Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with</u> <u>IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 13 of 27 ### 4.4 Minimum voltage relay (Pos. 86) **Functionality test:** | Minimum voltage relay (Pos. 86) must be adju | sted to approx 68% | |--|--------------------| | Activate loco in cooling mode. Check Power supply of 48V to minimum voltage relay. Disconnect primary voltage
transformer (wire no. 1511 and 1512) from load resistor (Pos. 74.2) and connect variac to wire no. 1501 and 1502. Supply 200V _{RMS} through variac. In this case; <i>Minimum voltage relay (Pos. 86) picks up</i> | (Yes/No) | | Try to activate the cab in driving mode: | /// /or 1 | | Contactor 218 do not close; the control | (yes/No) | | electronics is not be working. |] | | Turn off the variac : | | | Contactor 218 closes; the control electronics is be | (Yes/No) | | working | | | | | | Test Under Voltage Protection | <u>;</u> | | Activate the cab in cooling mode; Raise panto; | 15.7.7 | | Supply 200V _{RMS} through variac to wire no. 1501 | (Yés/No) | | & 1502; Close the VCB; Interrupt the supply | | | voltage | [| | The VCB goes off after 2 second time delay. | | | | | | Again supply 200V _{RMS} through variac to wire no. | (Yés/No) | | 1501 & 1502; Decrease the supply voltage below 140V _{RMS} ± 4V; | | | Fine tune the minimum voltage relay so that VCB opens. | | | Totale relay so that veb opens. | | ## 4.5 Maximum current relay (Pos. 78) | Disconnect wire 1521 & 1522 of primary current tra
&1522 (including the resistor at Pos. 6.11); Put loco in s
on contact 136.3; Close VCB; supply 3.6A _{RMS} at the
maximum current relay Pos. 78 for correct over current | imulation for driving mode; Open R ₃ – R ₄ | |--|--| | VCB opens with Priority 1 fault message on display. | (Yes/No) | | Keep contact R_3 – R_4 of 136.3 closed; Close VCB; Tune tf /9.9 A_p at the open wire 1521; | ne resistor 78.1 for the current of 7.0A _{RMS} | | VCB opens with Priority 1 fault message on display. | (Yés/No) | - qui Issue No.03 Effective Date: Feb 2022 ## P.L.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page : 14 of 27 ### 4.6 Test current sensors | Name of the sensor | Description of the test | Prescribed value | Set/Measured value | |--|--|------------------------------|--------------------| | Primary return current
sensor (Test-1,Pos.6.2/1
& 6.2/2) | Activate cab in driving mode supply 10A. Measure the current through diagnostic tool or measuring print. | (Variation allowed is ± 10%) | | | Primary return current | Supply 90mA _{DC} to the test winding of sensor through connector 415.AA/1or 2 pin no. 7(+) & 8(-) | _ | | | sensor (Test-2, Pos.6.2/1
& 6.2/2) | Supply 297mA _{DC} to the test winding of sensor through connector 415.AA/1or 2 pin no. 7(+) & 8(-) | | 299ma | | Auxiliary winding current sensor (Pos. 42.3/1 & 42.3/2) | Supply 90mA _{DC} to the test winding of sensor through connector 415.AC/1or 2 pin no. 7(+) & 8(-) Supply 333mA _{DC} to the test winding of | | | | | sensor through connector 415.AC/1 or 2 pin no. 7(+) & 8(-) | | 338mA | | Harmonic filter
current sensors
(Pos.8.5/1 &8.5/2) | Supply 90mA _{DC} to the test winding of sensor through connector 415.AE/1or 2 pin no. 7(+) & 8(-) | | | | | Supply 342mA _{DC} to the test winding of sensor through connector 415.AE/1or 2 pin no. 7(+) & 8(-) | | 346 ma | | Hotel load current
sensors (Pos. 33/1 & | Switch on hotel load. Supply 90mA _{DC} to the test winding of sensor through connector 415.AG/1or 2 pin no. 7(+) & 8(-) | NA | NA | | 33/2) | Supply 1242mA _{DC} to the test winding of sensor through connector 415.AG/1or 2 pin no. 7(+) & 8(-) | NA | NA | Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WO Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC 4.7 Test DC Link Voltage Sensors (Pos 15.6/*) Page: 15 of 27 This test is to be done by the commissioning engineer of the firm if required. #### 4.8 Verification of Converter Protection Circuits (Hardware limits) - This test is to be done as per para 6.17 of the document no. 3EHX 610 282 for both the converters. | Protection circuits | Limit on which shutdown | Measured limit | |--|---|---| | | should take place | | | Current sensors (Pos 18.2/1, 18.2/2, 18.2/3, 18.4/4, 18.5/1, 18.5/2, 18.5/3) for Power Converter 1 | Increase the current quickly in the test winding of the current sensors, VCB will off at 2.52A with priority 1 fault for each sensor. | For 18.2/1=
For 18.2/2=
For 18.2/3=
For 18.4/4=
For 18.5/1=
For 18.5/2=
For 18.5/3= | | Current sensors (Pos 18.2/1, 18.2/2, 18.2/3, 18.4/4, 18.5/1, 18.5/2, 18.5/3) for Power Converter 2 | Increase the current quickly in the test winding of the current sensors, VCB will off at 2.52A with priority 1 fault for each sensor. | For 18.2/1=
For 8.2/2=
For 18.2/3=
For 18.4/4=
For 18.5/1=
For 18.5/2=
For 18.5/3= | | Fibre optic failure In Power
Converter1 | Remove one of the orange fibre optic plugs on traction converter. VCB should trip | oK | | Fibre optic failure In Power
Converter2 | Remove one of the orange fibre optic plugs on traction converter. VCB should trip | OK | #### 4.9 Sequence of BUR contactors The sequence of operation of BUR contactors for 'ALL BUR OK' BUR 1 out BUR 2 out and BUR 3 out condition has to be verified by putting the Loco in driving mode (VCB should not be closed) and isolating the BURs one by one. In these condition following will be the contactor sequence. | Status | 52/1 | 52/2 | 52/3 | 52/4 | 52/5 | 52.4/1 | 52.4/2 | 52.5/1 | 52.5/2 | |-----------|-------|-------|-------|-------|-------|--------|--------|--------|--------| | AI BUR OK | Close | Open | Close | Open | Close | Open | Close | Close | Open | | BUR1 off | Close | Open | Close | Close | Open | Close | Open | Open | Close | | BUR2 off | Open | Open | Close | Close | Close | Close | Open | Open | Close | | BUR3 off | Open | Close | Open | Close | Close | Close | Open | Open | Close | (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 16 of 27 #### Monitored contactor sequence | Status | 52/1 | 52/2 | 52/3 | 52/4 | 52/5 | 52.4/1 | 52.4/2 | 52.5/1 | 52.5/2 | |-----------|-------|-------|-------|-------|-------|--------|--------|--------|--------| | AI BUR OK | CLOSE | OPEN | close | OPEN | ciose | OPEN | Close | CLOSE | olen | | BUR1 off | CLOSE | OPEN | CLOSE | CLOSE | OPEN | CLOSE | OPEN | OPEN | close | | BUR2 off | ofen | OPEN | CLOSE | CLOSE | OPEN | close | OPEN | OPEN | close | | BUR3 off | OPEN | CLUSE | OPEN | CLOSE | OPEN | close | OPEN | OPEN | CLOSE | #### 5.0 Commissioning with High Voltage #### 5.1 Check List | Items to be checked | Yes/No | |--|-----------| | Fibre optic cables connected correctly. | | | | YES | | No rubbish in machine room, on the roof, under the loco. | \ \ | | All the electronic Sub-D and connectors connected | YES | | | YES | | All the MCBs of the HB1 & HB2 open. | | | All the
three fuses 40/* of the auxiliary converters | YES | | | YES | | The fuse of the 415/110V auxiliary circuit (in HB1) open. | YES | | Roof to roof earthing and roof to cab earthing done | 1 1 1 2 3 | | Fixing connection and earthing in the average of the state stat | . YES | | Fixing, connection and earthing in the surge arrestor done correctly. | Vec | | Connection in all the traction motors done correctly. | YES_ | | All the bogie body connection and earthing connection done correctly. | YES | | All the bogie body conflection and eartning connection done correctly. | | | Pulse generator (Pos. 94.1) connection done correctly. | YES | | <u> </u> | YES | | All the oil cocks of the gate valve of the transformer in open condition. | YES | | All covers on Aux & Power converters, Filter block, HB1, HB2 fitted | 165 | | | YES | | KABA key interlocking system. | YES | ## 5.2 Safety test main circuit breaker Prepare to switch off the catenary supply during the first charging of the locomotive in case of any unexpected behavior of the electrical component of the loco. Charge the loco for the first time by closing BLDJ switch. The VCB will trip after certain time as no oil/coolant pumps are running yet. Perform the following safety test of main circuit breaker through both the cabs of the locomotive. ## P.L.W (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA ## <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page : 17 of 27 Doc.No.F/ECS/01 | Name of the test | Description of the test | Expected result | Monitored result | |---|--|---|------------------| | Emergency stop
in cooling mode | Raise panto in cooling mode. Put
the brake controller into RUN
position. Close the VCB.
Push emergency stop button 244. | VCB must open. Panto
must lower. Emergency
brake will be applied. | CHECKED OK | | Emergency stop
in driving mode | Raise panto in driving mode in. Put the brake controller into RUN position. Close the VCB. Push emergency stop button 244. | VCB must open. Panto must lower. Emergency brake will be applied. | CHECKED OK | | Under voltage
protection in
cooling mode | Raise panto in cooling mode. Close the VCB. Switch off the supply of catenary by isolator | VCB must open. | CHECKED OK | | Under voltage protection in driving mode | Raise panto in driving mode. Close the VCB. Switch off the supply of catenary by isolator | VCB must open with diagnostic message that catenary voltage out of limits | CHECKED OK | | Shut down in cooling mode. | Raise panto in cooling mode.
Close the VCB. Bring the BL-
key in O position. | VCB must open. Panto must lower. | CHECKED OK | | Shutdown in driving mode | Raise panto in driving mode. Close the VCB. Bring the BL-key in O position. | VCB must open. Panto must lower. | CHECKED OK | | Interlocking
pantograph-
VCB in cooling
mode | Raise panto in cooling
mode. Close the VCB.
Lower the pantograph
by ZPT | VCB must open. | Снесрео ок | | Interlocking
pantograph-
VCB in driving
mode | Raise panto in driving mode. Close
the VCB. Lower the pantograph by
ZPT | VCB must open. | CHECKED OK | Issue No.03 Effective Date: Feb 2022 P.L.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 18 of 27 #### 5.3 Auxiliary Converter Commissioning Switch on the high voltage supply and set up the loco in driving mode. Raise the panto. Close the VCB. Check that there is no earth fault in the auxiliary circuit, Switch off the VCB. Lower the panto. Create the earth fault in auxiliary circuit by making connection between wire no 1117(in HB2 cubicle) and earth. After 3 minutes a diagnostic message will come that "Earth fault auxiliary circuit." ### 5.3.1 Running test of 3 ph. auxiliary equipments Switch on the 3 ph. auxiliary equipment one by one. Check the direction of rotation of each auxiliary machine and measure the continuous current and starting current drawn by them. | Name of the auxiliary machine | Typical phase current | Measured continuous phase current | Measured starting phase current | |--|---|-----------------------------------|---------------------------------| | Oil pump transformer 1 | 9.8 amps | 8.7 | 4.3 | | Oil pump transformer 2 | 9.8 amps | 9.0 | 9.6 | | Coolant pump converter 1 | 19.6 amps | 5.4 | 7.0 | | Coolant pump
converter 2 | 19.6 amps | 5.5 | 80 | | Oil cooling blower unit 1 | 40.0 amps | 36.0 | . 1450 | | Oil cooling blower unit 2 | 40.0 amps | 37.0 | 150.0 | | Traction motor blower 1 | 34.0 amps | 28.0 | 132.0 | | Traction motor blower 2 | 34.0 amps | 29.0 | 154.0 | | Sc. Blower to Traction
motor blower 1 | 6.0 amps | 3.0 | 7.5 | | Sc. Blower to Traction
motor blower 1 | 6.0 amps | 3.2 | 7.2 | | Compressor 1 | 25 amps at 0
kg/cm ²
40 amps at 10
kg/cm ² | 24.0 | 55.0 | | Compressor 2 | 25 amps at 0
kg/cm ²
40 amps at 10
kg/cm ² | 250 | 50.0 | ## PATIALA LOCOMOTI NEW PORKS, PATIALA Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 19 of 27 ## 5.3.2 Performance of Auxiliary Converters Measure the performance of the auxiliary converters through software and record it. BUR1 (Condition: Switch off all the load of BUR 1)- to be filled by commissioning engineer of the firm. | Signal name | Description of the signal | Prescribed value | Monitored value | Value under
Limit (Yes/No) | |-----------------|---------------------------|------------------|-----------------|-------------------------------| | BURI 7303 XUUN | Input voltage to BUR1 | 75% (10%=125V) | 949V | YES | | | DC link voltage of BUR1 | 60% (10%=100V) | 636V | YES | | BURI 7303 XUIZI | DC link current of BUR1 | 0% (10%=50A) | I AMP | YES | BUR2 (Condition: Switch off all the load of BUR 2, Battery Charger on) to be filled by commissioning engineer of the firm. | Signal name | Description of the signal | Prescribed value by the firm | Monitored value | Value under
Limit (Yes/No) | |------------------|------------------------------------|------------------------------|-----------------|-------------------------------| | BUR2 7303-XUUN | Input voltage to BUR2 | 75% (10%=125V) | 1003V | YES | | BUR2 7303-XUUZ1 | DC link voltage of BUR2 | 60% (10%=100V) | 637V | YES. | | BUR2 7303-XUIZ 1 | DC link current of BUR2 | 1% (10%=50A)* | 7 AMP | YES | | BUR2 7303-XUILG | Current battery
charger of BUR2 | 3% (10%=100A)* | 22 AMP | Yes | | BUR2 7303-XUIB1 | Current battery of BUR2 | 1.5%(10%=100A)* | 12 AMP | yes | | BUR2 7303 -XUUB | Voltage battery of BUR2 | 110%(10%=10V) | 1100 | YES | ^{*} Readings are dependent upon charging condition of the battery. BUR3 (Condition: Switch off all the load of BUR 3, Battery Charger on) to be filled by commissioning engineer of the firm. | Signal name | Description of the signal | Prescribed set value by the firm | Monitored value | Value under
limit (Yes/No) | |---------------------|----------------------------------|----------------------------------|-----------------|-------------------------------| | BUR3 7303-XUUN | Input voltage to BUR3 | 75% (10%=125V | 1002V | YES | | BUR3 7303-
XUUZ1 | DC link voltage of BUR3 | 60% (10%=100V) | 637 V | 7E3 | | BUR3 7303-XUIZ I | DC link current
of BUR3 | 1% (10%=50A)* | 7AMP | 765
765 | | BUR3 7303-XUILG | Current battery charger of BUR 3 | 3% (10%=100A)* | 22 AMP | YES | | BUR3 7303-XUIB1 | Current battery of BUR 3 | 1.5%(10%=100A)* | 12 Ans | 7ES | | BUR3 7303-XUUB | Voltage battery
of BUR 3 | 110%(10%=10V) | 1104 | Yes | Readings are dependent upon charging condition of the battery. #### (Ref: WI/ECS/10) Doc.No.F/ECS/01 ## PATIALA LOCOMOTIVE WORKS, PATIALA Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 20 of 27 ### 5.3.3 Performance of BURs when one BUR goes out When any one BUR goes out then rest of the two BURs should take the load of all the auxiliaries at ventilation level 3 of the locomotive | Condition of BURs | Loads on BUR1 | Loads in BUR2 | Loads in BUR3 | | |-------------------|--|--|--|--------------| | All BURs OK | Oil Cooling unit
1&2 | TM blower1&2, TFP oil pump 1&2, SR coolant pump 1&2. | Compressor 1&2, Battery charger and TM Scavenger blower 1&2 | | | BUR 1 out | | Oil Cooling unit 1&2, TM
blower1&2, TM
Scavenger blower 1&2 | Compressor 1&2,TFP oil pump 1&2, SR coolant pump 1&2 and Battery charger. | CHECKE
OK | | BUR 2 out | Oil Cooling unit 1&2,
TM blower 1&2, TM
Scavenger blower 1&2 | | Compressor 1&2, TFP oil pump 1&2, SR coolant pump 1&2 and Battery charger. | | | BUR 3 out | Oil Cooling unit 1&2,
TM blower1&2, TM
Scavenger blower 1&2 | Compressor 1&2, TFP oil pump 1&2, SR coolant pump 1&2 and Battery charger. | | | #### 5.4 Auxiliary circuit 415/110 For checking earth fault detection, make a connection between wire no. 1218 and vehicle body. On switching on VCB, Earth
fault relay 89.5 must pick up and after 3 minutes a message will come in the Diagnostic display that Earth Fault 415/110V Circuit Switch on the 1 ph. auxiliary equipment one by one. Check the direction of rotation of each auxiliary machine and measure the continuous current and starting current drawn by them | Name of the auxiliary machine | Typical
phase
current | Measured phase current | Measured starting current | |-------------------------------|-----------------------------|------------------------|---------------------------| | Machine room blower 1 | 15.0 amps* | 4.3 | 13.0 | | Machine room blower 2 | 15.0 amps* | 4.4 | 120 | | Sc. Blower to MR blower 1 | 1.3 amps | 1.3 | 20 | | Sc. Blower to MR blower 2 | 1.3 amps | 1-2 | 2.2 | | Ventilator cab heater 1 | 1.1 amps | 1-1 | 1.1 | | Ventilator cab heater 2 | 1.1 amps | 1.1 | 1.7 | | Cab heater 1 | 4.8 amps | 4.6 | 4.7 | | * For indigenous MR blowers | 4.8 amps | 4.7 | 4.8 | For indigenous MR blowers. Issue No.03 Effective Date: Feb 2022 (Ref: WI/ECS/10) Doc.No.F/ECS/01 ## PATIALA LOCOMOTIVE W 前代S. PATIALA Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 21 of 27 #### 5.5 Hotel load circuit (Not applicable for WAG-9HC) For WAP-7 locomotive with Hotel load converter refer to Annexure-HLC #### 5.6 Traction Converter Commissioning #### This test is carried out in association with Firm. Traction converter commissioning is being done one at a time. For testing Converter 1, switch off the traction converter 2 by switch bogie cut out switch 154. For testing Converter 2, switch off the traction converter 2 by switch bogie cut out switch 154. Isolate the harmonic filter also by switch 160. Start up the loco by one converter. Follow the functionality tests. #### For Converter 1 | Test Function | Results desired | Result obtained | |---|---|-----------------| | Measurement of | Traction converter manufacturer to | | | charging and pre-
charging and charging
of DC Link of Converter 1 | declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | Measurement of discharging of DC Link of Converter 1 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | Снескер оК | | Earth fault detection on positive potential of DC Link of Converter 1 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | Earth fault detection on
negative potential of DC
Link of Converter 1 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | Earth fault detection on AC part of the traction circuit of Converter 1 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | Pulsing of line converter of Converter 1 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | Pulsing of drive
converter of Converter 1 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHELLED OK | Issue No.03 Effective Date: Feb 2022 ## Μ.Ί.Ψ Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with</u> <u>IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 22 of 27 #### For Converter 2 | Test Function | Results desired in sequence | Result obtained | |---|---|-----------------| | Measurement of charging and pre-charging and charging of DC Link of Converter 2 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | Measurement of discharging of DC Link of Converter 2 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | positive potential of DC
Link of Converter 2. | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | negative potential of DC
Link of Converter 2. | Traction converter manufacturer to declare the successful operation and demonstrate the same to the supervisor/v | CHECKED OK | | AC part of the traction circuit of Converter 2. | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | of Converter 2. | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | converter of
Converter 2 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | ## W.J.q (Ref: WI/ECS/10) Doc.No.F/ECS/01 ### PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 23 of 27 #### 5.7 Test protective shutdown SR | Test Function | Results desired in sequence | Result obtained | |--|--|-----------------| | Measurement of protective shutdown by Converter 1 electronics. | Start up the loco with both the converter. Raise panto. Close VCB. Move Reverser handle to forward or reverse. Remove one of the orange fibre optic feedback cable from converter 1Check that converter 1 electronics produces a protective shut down. • VCB goes off • Priority 1 fault mesg. on DDU appears | > CHECKED OK | | · | Disturbance in Converter 1 | | | Measurement of protective shutdown by Converter 2 electronics. | Start up the loco with both the converter. Raise panto. Close VCB. Move Reverser handle to forward or reverse. Remove one of the orange fibre optic feedback cable from converter 2. Check that converter 2 electronics produces a protective shut down. • VCB goes off • Priority 1 fault mesg. on diagnostic display appears Disturbance in Converter 2 | >CHECKED OK | #### 5.8 Test Harmonic Filter Switch on the filter by switch 160 | Test Function | Results desired in sequence | Result obtained | | | |---------------|---|-----------------|--|--| | currents | Start up the loco with both the converter. Raise panto. Close VCB. Move Reverser handle to forward or reverse. Apply a small value of TE/BE by moving the throttle. • FB contactor 8.41 must open. | CHECKED OK | | | ## P.L.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 24 of 27 | Test earth fault | FB contactor 8.2 must close. FB contactor 8.1 must close Check the filter current in diagnostic laptop Bring the TE/BE throttle to O Switch off the VCB FB contactor 8.1must open. FB discharging contactor 8.41 must close Check the filter current in diagnostic laptop Make a connection between wire | CHECKED OK | |---|--|------------| | detection harmonic filter circuit. | no. 12 and vehicle body. Start up the loco. Close VCB. • Earth fault relay 89.6 must pick up. • Diagnostic message comes that - Earth fault in harmonic filter circuit | CHECKED OK | | Test traction motor speed sensors for both bogie in both cabs | Traction converter manufacturer to declare the successful operation and demonstrate the same to the supervisor/ PLW | OK | ## 5.9 Test important components of the locomotive | Items to be tested | Description of the test | Monitored value/remarks | | |-----------------------------------|--|-------------------------|--| | Speedometer | VCU converter manufacturer to declare the successful operation and demonstrate the same to the supervisor/ PLW | CHECKED OK | | | Time delay module
of MR blower | The time after which the starting capacitor for MR blower should go off the circuit should be set to 10-12 seconds |
CHECKED OK | | | Ni-Cd battery voltage | At full charge, the battery voltage should be 110V DC. | CHECKED OK | | | Flasher light | From both cab flasher light should blink at least 65 times in one minute. | CHECKED OK | | | Head light | Head light should glow from both cabs by operating ZLPRD. Dimmer operation of headlight should also occur by operating the switch ZLPRD. | CHECKED OK | | ## **b'F'M** Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with</u> <u>IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 25 of 27 | Marker light | Both front and tail marker light should glow from both the cabs | CHECKED OK | |--|--|--| | Cab Light | Cab light should glow in both the cabs by operating the switch ZLC | CHECKED OK | | Spot lights | Both Drivers and Asst. Drivers Spot light should glow in both cabs by operating ZLDD | CHECKED OK | | Instrument lights | Instrument light should glow from both cab by operating the switch ZLI | CHECKED OK | | Illuminated Push
button | All illuminated push buttons should glow during the operation | CHECKED OK | | Contact pressure of the high rating contactors | The contact pressure of FB contactors (8.1, 8.2) is to be measured Criteria: The minimum contact pressure is 54 to 66 Newton. | For contactor 8.1: For contactor 8.2: | | Crew Fan | All crew fans should work properly when VCB of the loco is switched on. The airflow from each cab fan is to be measured. Criteria: The minimum flow of air of cab fan should be 25 m³/minute | Cab 1 LHS:
Cab 1 RHS:
Cab 2 LHS:
Cab 2 RHS: | ## 6.0 Running Trial of the locomotive | SN | Description of the items to be seen during trail run | Action which should take place | Remarks | |----|--|--|----------------| | 1 | Cab activation in driving mode | No fault message should appear on the diagnostic panel of the loco. | CHECKED | | | Loco charging | Loco to be charged and all auxiliaries should run. No fault message to appear on the diagnostic panel of the loco. Raise MR pressure to 10 Kg/cm ² , BP to 5 Kg/cm ² , FP to 6 Kg/cm ² . | CHECKED
OK | | 3. | Check function of
Emergency push stop. | This switch is active only in activated cab. By pushing this switch VCB should open & pantograph should be lowered. | CHECKED
OK | | 4. | Check function of BPCS. | Beyond 5 kmph, press BPCS, the speed of loco should be constant. BPCS action should be cancelled by moving TE/BE throttle, by dropping BP below 4.75 Kg/cm², by pressing BPCS again. | CHECKE P
OK | | 5. | Check train parting operation of the Locomotive. | Operate the emergency cock to drop the BP Pressure LSAF should glow. | CHECKED | Signature of the JE/SSE/Loco Testing OIL ## PATIALA LOCOMOTI**VE VIO**RKS, PATIALA Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 26 of 27 | 6. | Check vigilance | Sat the speed mare than 1 E lemph and ensure that | |--------|----------------------------|---| | • | operation of the | Set the speed more than 1.5 kmph and ensure that | | | locomotive | brakes are released i.e. BC < 1 Kg/cm ² . | | | locomotive | For 60 seconds do not press vigilance foot switch or | | | | sanding foots switch or TE/BE throttle or BPVG | | | | switch then | | | | Buzzer should start buzzing. | | | | LSVW should glow continuously. | | | · | Do not acknowledge the alarm through BPVG or | | | | vigilance foot switch further for 8 seconds then:- | | | | Emergency brake should be applied: | | | | automatically. | | | • | VCB should be switched off. | | | | Resetting of this penalty brake is possible only after | | | • | 32 seconds by bringing TE/BE throttle to 0 and | | | | acknowledge BPVR and press & release vigilance | | | | foot switch. | | 7.
 | Check start/run interlock | • At low pressure of MR (< 5.6 Kg/cm ²). | | | | With park brake in applied condition. | | ļ | | • With direct loco brake applied (BP< 4.75Kg/cm ²). | | | | • With automatic train brake applied (BP<4.75Kg/cm²). | | | ' | • With emergency cock (BP < 4.75 Kg/cm ²). | | 8. | Check traction interlock | Switch of the brake electronics. The | | | • | Tractive / Braking effort should ramp down, VCB | | | | should open and BP reduces rapidly. | | 9. | Check regenerative | Bring the TE/BE throttle to BE side. Loco speed | | | braking. | should start reducing. | | 10. | Check for BUR | In the event of failure of one BUR, rest of the two | | | redundancy test at | BURs can take the load of all the auxiliaries. For this | | | ventilation level 1 & 3 of | switch off one BUR. | | | loco operation | Auxiliaries should be catered by rest of two BURs. | | 11 | | Switch off the 2 BURs; loco should trip in this case. | | 11. | Check the power | Create disturbance in power converter by switching | | | converter | off the electronics. VCB should open and converter | | | isolation test | should get isolated and traction is possible with | | ·] | | another power converter. | Issue No.03 Effective Date: Feb 2022 #### **M'7'd** <u>Patiala locomotive</u> works, patiala Doc.No.F/ECS/01 (Ref: WI/ECS/10) <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 27 of 27 ## 7.0 Final check list to be verified at the time of Loco dispatch Condition /Operations of the following items are to be checked: | SN | Item | Cab-1 | Cab-2 | Remarks | |----|-----------------------------------|-------|-------|--------------------| | 1 | Head lights | οΚ | OK) | | | 2 | Marker Red | oK | OK | | | 3 | Marker White | oK | OK | | | 4 | Cab Lights | OK | oK. | | | 5 | Dr Spot Light | OK | ok | | | 6 | Asst Dr Spot Light | OK | OK | CHECKED WORKING OK | | 7 | Flasher Light | οK | oK | CHECKED WORKING OK | | 8 | Instrument Lights | OK | OK | | | 9 | Corridor Light | OK | øK | | | 10 | Cab Fans | OK | OK | | | 11 | Cab Heater/Blowers | OK | σK | | | 12 | All Cab Signal Lamps
Panel 'A' | OK | ok) | | ## Status of RDSO modifications LOCO NO: 42041 | Sn | Modification No. | Description | Remarks | |-----|--|--|--------------------| | 1. | RDSO/2008/EL/MS/0357 | Modification in control circuit of Flasher Light and Head Light of | | | | Rev.'0' Dt 20.02.08' | three phase electric locomotives. | Ok/Not Ok | | 2. | RDSO/2009/EL/MS/0377
Rev.'0' Dt 22.04.09 | Modification to voltage sensing circuit in electric locomotives. | OK/Not Ok | | 3. | RDSO/2010/EL/MS/0390
Rev.'0' Dt 31.12.10 | Paralleling of interlocks of EP contactors and Relays of three phase locomotives to improve reliability. | Øk/Not Ok | | 4. | RDSO/2011/EL/MS/0399
Rev.'0' Dt 08.08.11 | Removal of interlocks of control circuit contactors no. 126 from MCPA circuit. | Ok/Not Ok | | 5. | RDSO/2011/EL/MS/0400
Rev.'0' Dt 10.08.11 | Modification sheet for shifting the termination of \$GKW, 1.8 KV, 70 sq mm cables and 2x2.5 sq mm cables housed in lower portion of HB2 panel and provision of Synthetic resin bonded glass fiber sheet for three phase locomotives. | Ok/Not Ok | | 6. | RDSO/2011/EL/MS/0401
Rev.'0' Dt 10.08.11 | Modification sheet for relaying of cables in HB-2 panel of three phase locomotives to avoid fire hazards. | Ok/Not Ok | | 7. | RDSO/2011/EL/MS/0403
Rev.'0' Dt 30.11.11 | Auto switching of machine room/corridor lights to avoid draining of batteries in three phase electric locomotives. | Øk/Not Ok | | 8. | RDSO/2012/EL/MS/0408
Rev.'0' | assembly. | Ok/Not Ok | | 9. | RDSO/2012/EL/MS/0411
Rev.'1' dated 02.11.12 | Modification sheet to avoid simultaneous switching ON of White and Red marker light in three phase electric locomotives. | OK/Not Ok | | 10 | RDSO/2012/EL/MS/0413
Rev.'1' Dt 25.04.16 | Paralleling of interlocks of EP contactors and auxiliary contactors of three phase locomotives to improve reliability. | OK/Not Ok | | 11 | RDSO/2012/EL/MS/0419
Rev.'0' Dt 20.12.12 | Modification sheet to provide rubber sealing gasket in Master Controller of three phase locomotives. | Øk/Not Ok | | 12 | RDSO/2013/EL/MS/0420
Rev.'0' Dt 23.01.13 | Modification sheet to provide mechanical locking arrangement in
Primary Over Current Relay of three phase locomotives. | OK/Not Ok | | 13 | RDSO/2013/EL/MS/0425
Rev.'0' Dt 22.05.13 | Modification sheet for improving illumination of head light in dimmer mode in three phase electric locomotives. | Øk/Not Ok | | 14 | RDSO/2013/EL/MS/0426
Rev.'0' Dt 18.07.13 | Modification sheet of Bogie isolation rotary switch in three phase electric locomotives. | Ok/Not Ok | | 15 | RDSO/2013/EL/MS/0427
Rev.'0' Dt 23.10.13 | Modification sheet for MCP control in three phase electric locomotives. | Ok/Not Ok | | 16 | RDSO/2013/EL/MS/0428
Rev.'0' Dt 10.12.13 | Modification sheet for relocation of earth fault relays for
harmonic filter and hotel load along with its resistors in three phase electric locomotives. | 2 ΘK/Not Ok | | 17 | RDSO/2014/EL/MS/0432
Rev.'0' Dt 12.03.14 | Removal of shorting link provided at c-d terminal of over current relay of three phase electric locomotives. | Ok/Not Ok | | 18 | RDSO/2017/EL/MS/0464
Rev.'0' Dt 25.09.17 | Provision of Auxiliary interlock for monitoring of Harmonic filter ON (8.1)/adoption (8.2) Contactor in GTO/IGBT locomotives. | ØK/Not Ok | | 19 | RDSO/2017/EL/MS/0467
Rev.'0' Dt 07.12.17 | Modification in blocking diodes to improve reliability in three phase electric locomotives. | Ok/Not Ok | | .20 | RDSO/2018/EL/MS/0475
Rev.'0' | Modification in existing Control Electronics (CE) resetting scheme of 3 phase electric locomotives. | Øk/Not Ok | | 21 | RDSO/2019/EL/MS/0477
Rev.'0' Dt 18.09.19 | Implementation of push pull scheme. | Øk/Not Ok | | 22 | RDSO/2024/EL/MS/0500
Rev '0' Dt. 13.09.2024 | Recording of Flasher light operation either due to fault or manually by Loco Pilot in case of emergency with time stamping in VCU of 3-phase Electric Locomotives. | Øk/Not Ok | | 23 | RDSO/2024/EL/MS/0502
Rev '0' Dt 10.10.2024 | Unloader valve control circuit modification in three Phase Electric Locomotives. | Ok/Not Ok | | 24 | RDSO/2024/EL/MS/0503
Rev '0' Dt 17.09.2024 | Paralleling of interlocks of control circuit contactor to improve reliability of three phase electric locomotives | Ok/Not Ok | | 25 | RDSO/2024/EL/MS/0504
Rev '0' Dt 21.11.2024 | Isolation of Harmonic Filter from 3-phase locomotives fitted with M/s Alstom (BTIPL), CGPISL and Medha make IGBT based Propulsion Equipment | Cok/Not Ok | Signature of JE/SSE/ECS Loco No.: 42042 #### PLW/PATIALA ## PNEUMATIC TEST PARAMETERS OF 3-PHASE ELECTRIC LOCOMOTIVES (As per DG/RDSO/LKO's letter No.-EL/3.2.19/3phase, dated-29.03.2012) | SN | Parameters | Reference | Value | Result | |------|---|--------------------------|-----------------------|-------------| | | Brake Panel: M/s Faiveley | | | | | 1.0 | Auxiliary Air supply system (Pantograph & VCB) | | | | | 1.1 | Ensure, Air is completely vented from pantograph | | | 0 | | | Reservoir (Ensure Panto gauge reading is Zero) | | | | | 1.2 | Turn On BL Key. Now MCPA starts. | | 60 sec. (Max.) | 58 sec | | | Record pressure Build up time (8.0 kg/cm2) | | | | | 1.3 | Auxiliary compressor safety Valve 23F setting | Faiveley Doc. No. | 8.5±0.25kg/cm2 | 8.55 Kg/cm2 | | | | DMTS-014-1, 8 CLW's | - | | | | | check sheet no. | | | | | | F60.812 Version 2 | | | | 1.4 | Check VCB Pressure Switch Setting | CLW's check sheet | Opens 4.5±0.15 | 4.55 Kg/cm2 | | | | no. F60.812 Version 2 | kg/cm2, closes | | | | | | 5.5±0.15 kg/cm2 | 5.55 Kg/cm2 | | 1.5 | Set pantograph Selector Switch is in Auto, Open pan-1&2 Is | solating Cocks & KABA co | | | | 1.6 | Set Cab-1 Pan UP in Panel A. | | Observed Pan-2 | ОК | | | | | Rises. | | | 1.7 | Close Pan-2 isolating Cock | | Panto-2 Falls Down | ОК | | | Open Pan -2 isolating Cock | | Panto-2 Rises | | | 1.8 | Record Pantograph Rise time | | 06 to 10 seconds | 8 Sec | | 1.9 | Record Pantograph Lowering Time | | 06 to 10 seconds | 9 Sec | | 1.10 | Panto line air leakage | | 0.7 kg/cm2 in 5 | 0.10 kg/cm2 | | 1 11 | | | Min. | in 5 Min. | | 2.0 | High Reach Panto emergency test and reset. | | | ok | | | Main Air Supply System | | | | | 2.1 | Ensure, Air is completely vented from locomotive. Drain | Theoretical | | | | | out all the reservoirs by opening the drain cocks and then | calculation and | | | | | closed drain cocks. MR air pressure build up time by each | test performed by | | | | | compressor from 0 to 10 kg/cm2. i) with 1750 LPM compressor | Railways. | i) 7 mins Max. | 6 min. & 45 | | | ii) with 1450 LPM compressor | | ii) 8.5 mins Max. | sec. | | | ii) with 1430 trivi compressor | | ii) 6.5 iiiiis iviax. | 360. | | 2.2 | Drain air below MR 8 kg/cm2 to start both the | | Check Starting of | ok | | | compressors | | both compressors | | | 2.3 | Drain air from main reservoir up to 7 kg/cm2. Start | | 30 Sec. (Max) | CP1-29 Sec | | | compressors, Check pressure build time of individual | | (, | | | | compressor from 8 kg/cm2 to 9 kg/cm2 | | | CP2-28 Sec | | 2.4 | Check Low MR Pressure Switch Setting (37) | D&M test spec. | Closes at 6.40±0.15 | 6.50 Kg/cm2 | | | | MM3882 & | kg/cm2 Opens at | | | | | MM3946 | 5.60±0.15kg/cm2 | 5.65 Kg/cm2 | | 2.5 | Check compressor Pressure Switch RGCP setting (35) | D&M test spec. | Opens at 10±0.20 | 10 Kg/cm2 | | | | MM3882 & | kg/cm2, Closes | | | | | MM3946 | at 8±0.2kg/cm2 | 8 Kg/cm2 | | 2.6 | Run both the compressors Record Pressure build up time | Trial results | 3.5 Minutes Max. | 3.45 minute | #### **PLW/PATIALA** Loco No.: 42042 | 2.7 | Check unloader val | ve operation | | | | OK/Not OK | ОК | |------|---|---|---------------------|-------------------|----------------|------------------|-------------| | 2.8 | Check Auto Drain V | | 4 & 87) | | | Operates when | ОК | | | | | , | | | Compressor | | | | | | | | | starts | | | 2.9 | Check CP-I delivery | safety valve setting | (10/1). Run CP | D&M t | est spec. | 11.50±0.35 | 11.5 Kg/cm2 | | | Direct by BLCP. | | | MM3882 | & MM3946 | kg/cm2 | | | 2.10 | Check CP-2 delivery | safety valve setting | g (10/2). Run CP | | est spec. | 11.50±0.35 | 11.5 Kg/cm2 | | | direct by BLCP | | | MM3882 | & MM3946 | kg/cm2 | | | 2.11 | Switch 'OFF' the co | • | • | | est spec. | | | | | valve to reset at pre | essure 1.2 kg/cm2 le | ess than opening | MM3882 | & MM3946 | | | | | pressure. | /a! | | | | | | | 2.12 | BP Pressure: Switch | • | | | ck sheet no. | 5.0±0.10kg/cm2 | 5.0 Kg/cm2 | | | by drain cock of 1" | | | F60.812 Ve | ersion 2 | | | | 2.13 | check setting press | ure of Duplex Check | valve 92F. | CLW/s show | ck sheet no. | 6.0±0.20kg/sm2 | 6.00 | | 2.13 | FP pressure: Fit Test Gauge in Te | est point 107F EDTD | Open isolate cock | F60.812 Ve | | 6.0±0.20kg/cm2 | Kg/cm2 | | | 136F. Check pressu | • | Open isolate cock | 100.812 V | 131011 2 | | Kg/CIIIZ | | 3.0 | Air Dryer Operati | | | | | | | | 3.1 | Open Drain Cock 90 | | Compressor, leave | | | Tower to change | ok | | 0.12 | open for Test Check | | - | | | every minute | J | | 3.2 | Check Purge Air Sto | | | , | | | | | 3.3 | Check condition of humidity indicator | | | | | Blue | Blue | | 4.0 | Main Reservoir Leakage Test | | | | | | | | 4.1 | Put Auto Brake (A-9) in full service, Check MR Pressure air | | D&M t | est spec. | Should be less | 0.5 Kg/cm2 | | | | leakage from both cabs. | | | MM3882 | & MM3946 | than 1 kg/cm2 in | in 15 | | | | | | | | 15 minutes | minutes | | 4.2 | Check BP Air leakag | ge (isolate BP chargi | ng cock-70) | | est spec. | 0.15 kg/cm2 in 5 | 0.05 | | | | | | MM3882 & MM3946 | | minutes | Kg/cm2 in 5 | | | | | | | | | minutes | | 5.0 | Brake Test (Autor | • | | | | | | | 5.1 | Record Brake Pipe 8 | & Brake Cylinder pre | essure at Each Step | | | | | | | | | | | | | | | | Check proportionality of Auto Brake system | | CLW's che | ck sheet no. | | | | | | | icy of ridico Draine by | | F60.812 Version 2 | Auto controller | BP Pressure kg/cn | ո2 | BC (WAG-9 | % WAP-7) | BC (WAP-5) | | | | position | | | Kg/cm2 | | Kg/cm2 | | | | | Value | Result | Value | Result | Value | Result | | | | | | | | | | | | Run | 5±0.1 | 5.0 Kg/cm2 | 0.00 | 0.00 Kg/ cm2 | 0.00 | - | | | Intial | 4.60±0.1 | 4.6 Kg/cm2 | 0.40±0.1 | 0.40Kg/ cm2 | 0.75±0.15 | - | | | Full service | 3.35±0.2 | 3.4 Kg/cm2 | 2.50±0.1 | 2.5Kg/ cm2 | 5.15±0.30 | - | | | Emergency | Less than 0.3 | 0.2 Kg/cm2 | 2.50±0.1 | 2.5Kg/ cm2 | 5.15±0.30 | - | | | | i contract of the | | | 1 | | i . | ## PLW/PATIALA Loco No.: 42042 | 5.2 | Record time to BP pressure drop to 3.5 kg/cm2 Ensure Automatic Brake Controller handle is Full Service from Run |
D&M test spec. MM3882 & MM3946 | 8±2 sec. | 9 Sec | |-----|---|--|---|----------------------------------| | 5.3 | Operate Asst. Driver Emergency Cock, | D&M test spec.
MM3882 & MM3946 | BP pressure falls
to Below 2.5
kg/cm2 | ОК | | 5.4 | Check brake Pipe Pressure Switch 69F operates | CLW's check sheet no.
F60.812 Version 2 | Closes at BP
4.05- 4.35
kg/cm2
Opens at BP
2.85- 3.15
kg/cm2 | 4.30
Kg/cm2
3.05
Kg/cm2 | | 5.5 | Move Auto Brake Controller handle from Running to Emergency BC filling time from 0.4 kg/cm2 i.e. 95% of Max. BC developed WAP5 – BC 5.15 ± 0.3 kg/cm2 apply time WAP7 - BC 2.50 ± 0.1 kg/cm2 WAG9 - BC 2.50 ± 0.1 kg/cm2 | D&M test spec.
MM3882 & MM3946 | 4±1 sec.
7.5±1.5 sec.
21±3 sec. | 20 Sec. | | 5.6 | Move Auto Brake Controller handle to full service and BP pressure 3.5 kg/cm2. Move Brake controller to Running position BC Release time to fall BC Pressure up to 0.4 kg/cm2 i.e. 95% of Max. BC developed BC release Time WAP7 WAG9 | D&M test spec.
MM3882 & MM3946 | 17.5±25 sec.
52±7.5 sec . | 55 sec. | | 5.7 | Move Auto Brake Controller handle to Release, Check BP Pressure Steady at 5.5± 0.2 kg/cm2 time. | CLW's check sheet no.
F60.812 Version 2 | 60 to 80 Sec. | 78 Sec | | 5.8 | Auto Brake capacity test: The capacity of the A9 valve in released condition must conform to certain limit in order to ensure compensation for air leakage in the train without interfering with the automatic functioning of brake. * Allow The MR pressure to build up to maximum stipulated limit. * Close brake pipe angle cock and charge brake pipe to 5 kg/cm2 by A-9 (Automatic brake controlling) at run position. * Couple 7.5 dia leak hole to the brake hose pipe of locomotive. Open the angle cock for brake pipe. The test shall be carried out with all the compressors in working condition. | RDSO Motive power
Directorate report no.
MP Guide No. 11 July,
1999 Rev.1 | BP pressure
should not fall
below 4.0
kg/cm2 with in
60 Sec. | 4.5
Kg/cm2 | | 5.9 | Keep Auto Brake Controller (A-9) in Full Service. Press Driver End paddle Switch (PVEF) | | BC comes to '0' | 0 | | 6.0 | Direct Brake (SA-9) | | | | | 6.1 | Apply Direct Brake in Full Check BC pressure WAG9/WAP7 WAP5 | CLW's check sheet no.
F60.812 Version 2 | 3.5±0.20 kg/cm2
5.15±0.3 kg/cm2 | 3.6
Kg/cm2 | | 6.2 | Apply Direct Brake, Record Brake Cylinder charging time | D&M test spec. MM3882 & MM3946 | 8 sec. (Max.) | 8 Sec | ### PLW/PATIALA Loco No.: 42042 | 6.3 | Check Direct Brake Pressure switch 59 (F) | D&M test spec.
MM3882 &
MM3946 | 0.2.±0.1 kg/cm2 | 0.25
kg/cm2 | | |-----|--|---|---|---|--| | 6.4 | Release direct brake & BC Release time to fall BC pressure up to 0.4 kg/cm2 | | 10 -15 Sec. | 14 Sec | | | 7.0 | Modified System Software (only for CCB) | | -NA- | -NA- | | | 7.1 | Bail-off de-activated during emergency by any means | - | | | | | 7.2 | DPWCS and Non-DPWCS mode enabled | | Multi Loco | Presently | | | 7.3 | TCAS and Non-TCAS mode enabled | | Not Yet Launched | | | | 7.4 | Penalty brake application deactivated for Fault code 113 (FC 113) and CCB health signal will not drop to avoid loco detention/failure. The Brake Electronics Failure "message will not generate on DDS. | RDSO letter no. | Pressure Setting Needed is12 kg/sqcm causing mismatching with standard Pr Setting | not
happening
in PLW | | | 7.5 | CCB health signal logic revised (Now will remain high) for penalty condition occurring with FC 108 due to wrong operation/not affecting operation/ Not a CCB Fault (i.e Both controllers selected as LEAD etc) The Brake electronic failure message will not generate on DDS | EL/3.2.19/3-phase
(CCB), dtd
30.01.2023 | -NA- | -NA- | | | 7.6 | CCB health signal logic for FC 102 (In case of BC request from VCU is more than 90 %-above 9V DC) is changed i.e CCB health signal will not drop for FC 102 which will avoid loco detention/failure. The brake electronic failure message will not generate on DDS. | | Could not
performed by
M/s Knorr | Presently
Not
happening
in PLW | | | 7.7 | Booting time for CCB with TCAS/TPM/PTWS/DPWCS mode 15-20 sec. However, in case of absence of either one or both system booting time subsequently increased to 40-50 sec. | | -NA- | -NA- | | | 8.0 | Sanding Equipment | | | | | | 8.1 | Check Isolating Cock-134F is in open position. Press sander paddle Switch. (To confirm EP valves Operates) | | Sand on Rail | Ok | | | 9.0 | Test Vigilance equipment : As per D&M test specification | | | Ok | | Signature of SSE/Shop | | 42042 | | | | | | | | | | |-------|-------------------------|---------------------------|-----------|-----------------------|--------------------------------|--------------------------|--|--|--|--| | | Warranty | | | | | | | | | | | S.No. | Description | PL NO. | QPL /Nos. | Supplier | Sr. no. | | | | | | | 1 | Pantograph | 29880014(HR),
29880026 | 2 | FAIVELEY, CONTRANSYS | C25-1230/MAR-2025, 14868-07/24 | | | | | | | 2 | Servo motor | 29880026 | 2 | CONTRANSYS | 14867-07/24 | | | | | | | 3 | Air Intake filter Assly | 29480103 | 2 | Vikrant | 3595-03/2025, 3595-03/2025 | | | | | | | 4 | Insulator Panto Mtg. | 29810127 | 8 | MIL | 03-2025, 04-2025 | | | | | | | | | | | | | | | | | | | 5 | High Voltage Bushing | 29731021 | 1 | ELECTRANEX | EIPL-5981-01-25 | | | | | | | 6 | Voltage Transformer | 29695028 | 1 | CG POWER & INDUSTRIAL | 243359-2025 | AS Per PO/IRS Conditions | | | | | | 7 | Vacuum Circuit Breaker | 25712202 | 1 | Autometers | AALN/04/2025/014/VCBA/014 | | | | | | | 8 | Insulator Roof line | 29810139 | 9 | MIL | 02-2025, 02-2025 | | | | | | | 9 | Harmonic Filter | 29650033 | 1 | Sunshine Industries | 1343-12/2024 | | | | | | | 10 | Earth Switch | 29700073 | 1 | Patra & Chanda | 303-09/2024 | | | | | | | 11 | Surge Arrester | 29750052 | 2 | CG POWER & INDUSTRIAL | 57367-2024, 57368-2024 | 1 | | | | | | | | | - | • | 12 | Air Compressor (A,B) | 29511008 | 2 | ELGI | EYLS 925136 A, EXGS 923588 B | | | | | | | 13 | Air Dryer | 29162051 | 1 | TRIDENT | LD2-05-1880-25 | | | | | | | 14 | Babby compressor | 25513000 | 1 | CEC | RB 5026-02-25 | | | | | | | 15 | Air Brake Panel | 29180016 | 1 | FAIVELEY | MAR 25-07-WAG9 3993 | | | | | | | 16 | Contoller (A,B) | 29180016 | 2 | FAIVELEY | N 24-099 A, N 24-038 B | | | | | | | 17 | Breakup Valve | 29180016 | 2 | FAIVELEY | | | | | | | | 18 | wiper motor | 29162026 | 4 | AUTO INDUSTRY | | | | | | | # भारतीय रेल Indian Railways पटियाला रेलइंजन कारख़ाना, पटियाला ## PATIALA LOCOMOTIVE WORKS, PATIALA LOCO TESTING & DISPATCH REPORT OF IGBT BASED wAg9hc ELECTRIC LOCOMOTIVE LOCO NO.: 42042 TYPE: WAG9HC Rail way shed: Cr/BSLL ProPulsion system: CGL Date of Dispatch: 22.06.2025 लोको निर्माण रिकार्ड # पटियाला रेलइंजन कारख़ाना, पटियाला PATIALA LOCOMOTIVE WORKS, PATIALA LOCO NO.: 42042 **RAILWAY/SHED: CR/BSLL** DOD: June-2025 #### **INDEX** | SN | PARA | ACTIVITIES | PAGE NO. | | | | |-----|-------------------------------|---|----------|--|--|--| | | Testing & Commissioning (ECS) | | | | | | | 1. | 1.0 | | | | | | | | 1.1 | Continuity Test of Traction Circuit Cables | | | | | | | 1.2 | Continuity Test of Auxiliary Circuit Cables | 1-4 | | | | | | 1.3 | Continuity Test of Battery Circuit Cables | | | | | | | 1.4 | Continuity Test of Screened Control Circuit Cables | | | | | | 2. | 2.0 | Low Tension test | | | | | | | 2.1 | Measurement of resistor in OHMS (Ω) | 5-6 | | | | | | 2.2 | Check Points | 3-0 | | | | | | 2.3 | Low Tension Test Battery Circuits (without control electronics) | | | | | | 3 | 3.0 | Downloading of Software | | | | | | | 3.1 | Check Points | | | | | | | 3.2 | Download Software | 7-10 | | | | | | 3.3 | Analogue Signal Checking | | | | | | | 3.4 | Functional test in simulation mode | | | | | | 4 | 4.0 | Sensor test & convertor test | | | | | | | 4.1 | Test wiring Transformer Circuits – Polarity Test | | | | | | | 4.2 | Test wiring auxiliary transformer 1000V/415V-110V (pos. 67) | | | | | | | 4.3 | Primary Voltage Transformer | | | | | | | 4.4 | Minimum voltage relay (Pos. 86) | 11-16 | | | | | | 4.5 | Maximum current relay (Pos. 78) | 17.76 | | | | | | 4.6 | Test current sensors | | | | | | | 4.7 | Test DC Link Voltage Sensors (Pos 15.6/*) | | | | | | | 4.8 | Verification of Converter Protection Circuits (Hardware limits) | | | | | | | 4.9 | Sequence of BUR contactors | | | | | | 5. | 5.0 | Commissioning with High Voltage | | | | | | | 5.1 | Check List | | | | | | | 5.2 | Safety test main circuit breaker | | | | | | | 5.3 | Auxiliary Converter Commissioning | | | | | | | 5.3.1 | Running test of 3 ph. auxiliary equipments | | | | | | | 5.3.2 | Performance of Auxiliary Converters | 40.05 | | |
| | | 5.3.3 | Performance of BURs when one BUR goes out | 16-25 | | | | | | 5.4
5.5 | Auxiliary circuit 415/110 | | | | | | | 5.5
5.6 | Hotel Load Circuit Treation Convertor Commissioning | | | | | | | 5.6
5.7 | Traction Converter Commissioning Test protective shutdown SP | | | | | | | 5.7
5.8 | Test protective shutdown SR Test Harmonic Filter | | | | | | | 5.6
5.9 | Test important components of the locomotive | | | | | | 6. | 6.0 | Running Trial of the locomotive | 25-26 | | | | | 7. | 7.0 | Final Check List to be verified at the time of Loco dispatch | 27 | | | | | 8. | 8.0 | Status of RDSO modifications | 28 | | | | | 9. | 1-10 | Pneumatic Test Parameters | 29 - 32 | | | | | 10. | | Loco Check Sheet(LAS) | 33 | | | | | 11. | - | Component History (LAS,ECS,ABS) | 34-36 | | | | | 12. | - | Component History & Testing Parameter (Bogie Shop) | 37 - 38 | | | | | 13 | - | Warranty Conditions as per Tenders | 39 -41 | | | | P.L.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) #### PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC #### 1.0 Continuity Test of the cables Page: 1 of 27 #### 1.1 Continuity Test of Traction Circuit Cables As per cable list given in Para 1.3 of document no. 3 EHX 410 124, check the continuity with continuity tester and megger each cable to be connected between following equipment with 1000V megger. | From | То | Continuity
(OK/Not OK) | Prescribed
Megger Value (min) | Measured
Megger Value | |-------------------|---|---------------------------|----------------------------------|--------------------------| | Filter Cubicle | Transformer | oK | 100 ΜΩ | 750002 | | Filter Cubicle | Terminal Box of
Harmonic Filter
Resistor (Roof) | ok | 100 ΜΩ | 800me | | Filter Cubicle | Earthing Choke | OK | 100 ΜΩ | 800ms | | Earthing Choke | Earth Return
Brushes | ok | 100 ΜΩ | 750 ans | | Transformer | Power Converter 1 | OK | 100 ΜΩ | 800 ars | | Transformer | Power Converter 2 | ok | 100 ΜΩ | 700 MS | | Power Converter 1 | TM1, TM2, TM3 | ok | 100 ΜΩ | 800 ml | | Power Converter 2 | TM4, TM5, TM6 | OK | 100 ΜΩ | 900m2 | | Earth | Power Converter 1 | ok | 100 ΜΩ | 85°ona | | Earth | Power Converter 2 | ok | 100 ΜΩ | 750ms | ### 1.2 Continuity Test of Auxiliary Circuit Cables As per cable list given in Para 1.4 of document no. 3 EHX 410 124, check the continuity with continuity meter and megger each cable to be connected between following equipment with the help of 1000V megger. Signature of the JE/SSE/Harness Signature of the JE/SSE/Loco Cabling # W.J.¶ (Ref: WI/ECS/10) # PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 2 of 27 Doc.No.F/ECS/01 | From | То | Continuity(OK/
Not OK) | Prescribed
Megger Value
(min) | Measured
Megger Value | |-------------|-----------------------------|---------------------------|-------------------------------------|--------------------------| | Transformer | BUR1 | OK | 100 ΜΩ | 600m/L | | Transformer | BUR2 | Jok. | 100 M Ω | JAMMAL. | | Transformer | BUR3 | ou | 100 M Ω | KOD MS | | Earth | BUR1 | OK | 100 ΜΩ | 600M | | Earth | BUR2 | OK | 100 M Ω | 500 m/ | | Earth | BUR3 | ole | 100 M Ω | 600 M/L | | BUR1 | HB1 | or | 100 MΩ | 100 mr | | BUR2 | HB2 | OK. | 100 MΩ | Looma | | HB1 | HB2 | O'L | 100 ΜΩ | 600 011 | | HB1 | TM Blower 1 | or | 100 ΜΩ | 600 M | | HB1 | TM Scavenge Blower 1 | OK. | 100 ΜΩ | 700 m/ | | HB1 | Oil Cooling Unit 1 | ok_ | 100 ΜΩ | 800 m | | HB1 | Compressor 1 | ML | 100 ΜΩ | 600 m | | HB1 | TFP Oil Pump 1 | 814 | 100 ΜΩ | 700 mr | | HB1 | Converter Coolant
Pump 1 | OK | 100 ΜΩ | 600 mr | | HB1 | MR Blower 1 | or | 100 ΜΩ | 600 M2 | | HB1 | MR Scavenge Blower 1 | ok | 100 ΜΩ | Sooma | | HB1 | Cab1 | ol- | 100 ΜΩ | 600 m2 | | Cab1 | Cab Heater 1 | OK | 100 ΜΩ | Jooms | | HB2 | TM Blower 2 | ok. | 100 ΜΩ | 600 m/2 | | HB2 | TM Scavenge Blower 2 | 80K | 100 ΜΩ | Commo | | HB2 | Oil Cooling Unit 2 | ok | 100 ΜΩ | | | HB2 | Compressor 2 | 014 | 100 ΜΩ | 700 Ma | | HB2 | TFP Oil Pump 2 | ole_ | 100 ΜΩ | 600 M/ | | HB2 | Converter Coolant Pump 2 | - Ok | 100 ΜΩ | 700 m | | HB2 | MR Blower 2 | gle_ | 100 ΜΩ | 600 Mg/2 | | HB2 | MR Scavenge Blower 2 | ok | 100 ΜΩ | 600 ML | | HB2 | Cab2 | - Bl | 100 ΜΩ | STO MA | | Cab2 | Cab Heater 2 | ok | 100 MΩ · | 600 MA | Doc.No.F/ECS/01 (Ref: WI/ECS/10) #### PATIALA LOCOMOTIVE WORKS, PATIALA Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU Locomotive No.: 42042 1.3 Continuity Test of Battery Circuit Cables Type of Locomotive: WAP-7/WAG-9HC Page: 3 of 27 Check continuity of following cables as per Para 2.3 of document no. 3 EHX 610 299 | From | То | Condition | Continuity
(OK/Not OK) | |-------------------------|--|--------------------------------|---------------------------| | Battery (wire no 2093) | Circuit breakers 110-
2, 112.1-1, 310.4-1 | By opening and closing MCB 112 | OK | | MCB 110 | Connector 50.X7-1 | By opening and closing MCB 110 | OK | | Battery (Wire no. 2052) | Connector 50.X7-2 | | OK | | SB2 (Wire no 2050) | Connector 50.X7-3 | | OK | | Close the MCB 112, 110, 112.1, and 310.4 and | Prescribed value | Measured | |--|-------------------|-----------------------| | measure the resistance of battery wires 2093, 2052, 2050 with respect to the loco earth. | > 0.5 MΩ | Value
MΩ | | Measure the resistance between 2093 & 2052, 2093 & 2050, 2052 & | Prescribed value: | Measured | | 2050 | > 50 MΩ | Value
<u>70</u> ΜΩ | Commission the indoor lighting of the locomotive as per Sheet No 7A & 7B. # 1.4 Continuity Test of Screened Control Circuit Cables Check the continuity and isolation of the screen cable of the following circuits with the help of sheet no. mentioned against each as per document no. 3 EHX 610 299. | Screened control circuit cables for | Corresponding Sheet Nos. | Continuity & Isolation (OK/Not OK) | |-------------------------------------|--------------------------|------------------------------------| | Battery voltage measurement | 04B | OK | | Memotel circuit of cab1 &2 | 10A | OK | | Memotel speed sensor | 10A | OK OK | | Primary voltage detection | 01A, 12A | ø K | | Brake controller cab-1 & 2 | 06F, 06G | OK. | P.L.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with</u> <u>IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 4 of 27 | Master controller cab-1 &2 | 08C, 08D | OK | |---|----------|----------| | TE/BE meter bogie-1 & 2 | 08E, 08F | ØK | | Terminal fault indication cab-1 & 2 | 09F | OK | | Brake pipe pressure actual BE electric | 06H | o K | | Primary current sensors | 12B, 12F | OK | | Harmonic filter current sensors | 12B, 12F | oK | | Auxiliary current sensors | 12B, 12F | OK | | Oil circuit transformer bogie 1 | 12E, 12I | _ | | Magnetization current | 12C, 12G | <u> </u> | | Traction motor speed sensors (2 nos.) and temperature sensors (1 no.) of TM-1 | 12D | OK | | Traction motor speed sensors (2nos) and temperature sensors (1 no.) of TM-2 | 12D | OK OK | | Traction motor speed sensors (2nos) and temperature sensors (1 no.) of TM-3 | 12D | o K | | Traction motor speed sensors (2 nos.) and temperature sensors (1 no.) of TM-4 | 12H | OK | | Traction motor speed sensors (2nos) and temperature sensors (1 no.) of TM-5 | 12H | øK | | Traction motor speed sensors (2nos) and temperature sensors (1 no.) of TM-6 | 12H | ок | | Train Bus cab 1 & 2 (Wire U13A& U13B to earthing resistance= | 13A | OK | | 10KΩ±±10%) | | | | UIC line | 13B | OK | | Connection FLG1-Box TB | 13A | øK. | سلعلجت # br.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) #### PATIALA LOCOMOTIVE WORKS, PATIALA # <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC P Page: 5 of 27 #### 2.0 Low Tension test #### 2.1 Measurement of resistor in OHMS (Ω) Measure the resistances of the load resistors for primary voltage transformer, load resistors for primary current transformer and Resistor harmonic filter as per Para 3.2 of the document no. 3 EHX 610 279. | Name of the resistor | Prescribed value | Measured value | |--|----------------------|----------------| | Load resistor for primary voltage transformer (Pos. 74.2). | 3.9K Ω ± 10% | 3.9 KSL | | Resister to maximum current relay. | 1 Ω ± 10% | 12 | | Load resistor for primary current transformer (Pos. 6.11). | 3.3 Ω ± 10% | 3.32 | | Resistance harmonic filter (Pos 8.3). Variation allowed \pm 10% | WAP7 | WAP7 | | Between wire 5 & 6 | 0.2 Ω | 0.20 | | Between wire 6 & 7 | 0.2 Ω | 0.21 | | Between wire 5 & 7 | 0.4 Ω | 0.42 | | For train bus, line U13A to earthing. | 10 k Ω ± 10% | 10.0K SL | | For train bus, line U13B to earthing. | 10 k Ω ± 10% | 10.0KSZ | | Insulation resistance of High Voltage Cable from the top of the roof to the earth (by1000 V megger). | 200 ΜΩ | 300 MJL | | Resistance measurement earth return brushes Pos. 10/1. | ≤0.3 Ω | 0.2952 | | Resistance measurement earth return brushes Pos. 10/2. | ≤0.3 Ω | 0.2952 | | Resistance measurement
earth return brushes Pos. 10/3. | ≤0.3 Ω | 0.2852 | | Resistance measurement earth return brushes Pos. 10/4. | ≤0.3 Ω | 0.30s2 | | Earthing resistance (earth fault detection) Harmonic Filter –I; Pos. 8.61. | 2.2 kΩ ± 10% | 2.2KD | | Earthing resistance (earth fault detection) Harmonic Filter –II; Pos 8.62. | 2.7 k Ω ± 10% | 2.7 KD | | Earthing resistance (earth fault detection) Aux. Converter; Pos. 90.3. | 3.9 k Ω ± 10% | 3.9 KD | | Earthing resistance (earth fault detection) 415/110V; Pos. 90.41. | 1.8 kΩ± 10% | 1.8 KD | | Earthing resistance (earth fault detection) control circuit; Pos. 90.7. | 390 Ω ± 10% | 39052 | | Earthing resistance (earth fault detection)
Hotel load; Pos. 37.1(in case of WAP5). | 3.3 k Ω ± 10% | NA | | Resistance for headlight dimmer; Pos. 332.3. | 10 Ω ± 10% | 100 | Effective Date: Feb 2022 # P.L.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) #### PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with</u> <u>IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Note: Page: 6 of 27 Make sure that the earthing brush device don't make direct contact with the axle housing, earth connection must go by brushes. #### 2.2 Check Points | Items to be checked | Remarks | | |--|------------|--| | Check whether all the earthing connection in roof and machine room as mentioned in sheet no. 22A is done properly or not. These earthing connections must be flexible and should be marked yellow & green | CHECKED OK | | | Check whether all the earthing connection between loco body and bogie is done properly or not. These cables must be flexible having correct length and cross section | CHECKED OK | | #### 2.3 Low Tension Test Battery Circuits (without control electronics) These tests are done with the help of the special type test loop boxes as per procedure given in Para 3.6 of the document no. 3 EHX 610 279 | Name of the test | Schematic used. | Remarks | |---|-----------------------------------|---| | Test 24V supply | Sheet 04F and other linked sheets | CHEALED OK | | Test 48V supply | Sheet 04F & sheets of group 09 | Fan supply to be checked. $\mathcal{O} \mathcal{K}$ | | Test traction control | Sheets of Group 08. | øK. | | Test power supply bus stations. | Sheets of Group 09. | Fan supply to be checked. OK | | Test control main apparatus | Sheets of Group 05. | oK. | | Test earth fault detection battery circuit by making artificial earth fault to test the earth fault detection | Sheet 04C | σK | | Test control Pneumatic devices | Sheets of Group 06 | OK | | Test lighting control | Sheets of Group 07 | oK | | Pretest speedometer | Sheets of Group 10 | oK | | Pretest vigilance control and fire system | Sheets of Group 11 | OK | | Power supply train bus | Sheets of Group 13 | OK | Effective Date: Feb 2022 # P.L.W (Ref: WI/ECS/10) Doc.No.F/ECS/01 #### PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: $42\sigma42$ 3.0 Downloading of Software Type of Locomotive: WAP-7/WAG-9HC Page: 7 of 27 | 3.1 Check Points. | Yes/No | |--|--------| | Check that all the cards are physically present in the bus stations and all the plugs are connected. | YES | | Check that all the fibre optic cables are correctly connected to the bus stations. | YES | | Make sure that control electronics off relay is not energized i.e. disconnect Sub-D 411.LG and loco is set up in simulation mode. | YES | | Check that battery power is on and all the MCBs (Pos. 127.*) in SB1 &SB2 are on | YES | 3.2 Download Software The software of Traction converter, Auxiliary converter and VCU should be done by commissioning engineer of the firm in presence of supervisor. Correct software version of the propulsion equipment to be ensured and noted: | Traction converter-1 software version: | 1.0.6.9 | |---|----------| | Traction converter-2 software version: | 1.0.6.9 | | Auxiliary converter-1 software version: | 1.0.1.0 | | Auxiliary converter-2 software version: | 2.0.10 | | Auxiliary converter-3 software version: | 3.0.1.0 | | Vehicle control unit -1 software version: | 60.0.18 | | Vehicle control unit -2 software version: | 6.0.0.18 | #### 3.3 Analogue Signal Checking Check for the following analogue signals with the help of diagnostic tool connected with loco. | Description | Signal name | Prescribed value | Measured
Value | |---|--|------------------------|-------------------| | Brake pipe pressure | FLG2;0101XPrAutoBkLn | 100% (= 5 Kg/cm2) | OK | | Actual BE electric | FLG2; AMSB_0201- Wpn BEdem | 100% (= 10V) | ОК | | TE/BE at 'o' position from both cab | FLG1; AMSB_0101- Xang Trans
FLG2; AMSB_0101- Xang Trans | Between 9% and 11% | 10% | | TE/BE at 'TE maximal'
position from both cab | FLG1; AMSB 0101- Xang Trans | Between 99 % and 101 % | 100% | | TE/BE at 'TE minimal' position from both cab | FLG1; AMSB_0101- Xang Trans FLG2; AMSB_0101- Xang Trans | Between 20 % and 25 % | 25 % | # PL.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA # <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 8 of 27 | TE/BE at 'BE maximal position from both cab | XangTrans
FLG2; AMSB_0101-
XangTrans | Between 99% and 101% | 100% | |---|--|---|--------| | TE/BE at 'BE Minimal position from both cab | XangTrans
FLG2; AMSB_0101-
XangTrans | Between 20% and 25% | 25% | | TE/BE at '1/3' position in TE and BE mode in both cab. | LT/BDEM>1/3
HBB2; AMS_0101-
LT/BDEM>1/3 | Between 42 and 44% | 44% | | TE/BE at '1/3'positior
in TE and BE mode in
both cab. | HBB1; AMS_0101-
LT/BDEM>2/3
HBB2; AMS_0101-
LT/BDEM>2/3 | Between 72 and 74% | 74% | | Both temperature
sensor of TM1 | SLG1; AMSB_0106-
XAtmp1Mot | Between 10% to 11.7% depending upon ambient temperature 0° C to 40° C | 21.0 | | Both temperature sensor of TM2 | SLG1; AMSB_0106-
Xatmp2Mot | Between 10% to 11.7% depending upon ambient temperature 0°C to 40°C | 22% | | Both temperature sensor of TM3 | SLG1; AMSB_0106-
Xatmp3Mot | Between 10% to 11.7% depending upon ambient temperature 0°C to 40°C | 20°C | | Both temperature sensor of TM4 | SLG2; AMSB_0106-
XAtmp1Mot | Between 10% to 11.7% depending upon ambient temperature 0°C to 40°C | 20°C | | Both temperature sensor of TM5 | SLG2; AMSB_0106-
Xatmp2Mot | Between 10% to 11.7% depending upon ambient temperature 0°C to 40°C | 20.5°c | | | Xatmp3Mot | Between 10% to 11.7% depending upon ambient temperature 0°C to 40°C | 21°c | Effective Date: Feb 2022 #### M'Td PATIALA LOCOMOTIVE WÖRKS. PATIALA Doc.No.F/ECS/01 (Ref: WI/ECS/10) <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 9 of 27 #### 3.4 Functional test in simulation mode Conduct the following functional tests in simulation mode as per Para 5.5 of document no.3EHX 610 281. through the Diagnostic tool/laptop: | Test Function | Result desired in sequence | Result | |----------------------------------|--|--------------| | | nesuit desired in sequence | obtained | | Emergency shutdown through | VCB must open. | obtained | | emergency stop switch 244 | Panto must lower. | CHECKED OK | | | T ditto mast lower. | Checkey OR | | Shut Down through cab activation | VCB must open. | | | switch to OFF position | Panto must lower. | CHECKED OK | | Converter and filter contactor | FB contactor 8.41 is closed. | | | operation with both Power | By moving reverser handle: | 1) | | Converters during Start Up. | Converter pre-charging contactor | V | | | 12.3 must close after few seconds. | | | | • Converter contactor 12.4 must close. | | | | Converter re-charging contactor | CHECKED OK | | | 12.3 must opens. | | | | By increasing TE/BE throttle: | | | | • FB contactor 8.41 must open. | • | | | • FB contactor 8.2 must close. | | | | $ullet$ FB contactor 8.1 must close. \int | | | Converter and filter contactor | | | | operation with both Power | The same detribution her to o | | | Converters during Shut Down. | • VCB must open. | | | | • Panto must lower. | | | | Converter contactor 12.4 must open. | T CHECKED OK | | · | FB contactor 8.1 must open. | , | | | FB contactors 8.41 must close. | · | | | FB contactor 8.2 must remain closed. | | | | · / | | | <u> </u> | / | | - W Effective Date: Feb 2022 # P.L.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) #### PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with</u> <u>IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u>
Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 10 of 27 | | | _ | |--|---|-------------| | Contactor filter adaptation by isolating any bogie | Isolate any one bogie through bogie cut out switch. Wait for self-test of the loco. | | | | Check that FB contactor 8.1 is open. | į | | | Check that FB contactor 8.2 is open. | TCHECKED OK | | | After raising panto, closing VCB, and | Checkey | | | setting TE/BE | V | | | • FB contactor 8.1 closes. | I | | | • FB contactor 8.2 remains open. | 1 | | Test earth fault detection battery | By connecting wire 2050 to | | | circuit positive & negative | earth, create earth fault | | | • | negative potential. | / | | | message for earth fault | 1 | | | By connecting wire 2095 | CHECKED OK | | | to earth, create earth | | | • | fault positive potential. | Å | | · | • message for earth fault | | | | / | | | Test fire system. Create a smoke in | When smoke sensor-1 gets | | | the machine room near the FDU. | activated then | 1 | | Watch for activation of alarm. | Alarm triggers and fault | 1 | | • | message priority 2 | | | | appears on screen. | | | | When both smoke sensor | CHECKED OK | | | 1+2 gets activated then | CILCACY OF | | | A fault message priority | | | | 1 appears on screen and | | | • | lamp LSF1 glow. | | | • • • | • Start/Running interlock occurs and | | | | TE/BE becomes to 0. | | | ime, date & loco number | Ensure correct date time and Loco | | | | number | OK | | | 1 | l l | ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42 042 Type of Locomotive: WAP-7/WAG-9HC Page: 11 of 27 #### 4.0 Sensor Test and Converter Test 4.1 Test wiring main Transformer Circuits Apply $198V_p/140V_{RMS}$ to the primary winding of the transformer (at 1u; wire no. 2 at surge arrestor and at 1v; wire no. 100 at earthing choke). Measure the output voltage and compare the phase of the following of the transformers. | Output
Winding nos. | Description of winding. | Prescribed Output Voltage & Polarity with input supply. | Measured output | Measured polarity | |-----------------------------------|---|--|---------------------|-------------------| | 2U ₁ & 2V ₁ | For line converter bogie 1
between cable 801A-
804A | 10.05V _p and same polarity | 10-05 Up | OK | | 2U ₄ & 2V ₄ | For line converter bogie 1
between cable 811A-
814A | 10.05V _p and same polarity | 16.04 vp | OK | | 2U ₂ & 2V ₂ | For line converter bogie 2
between cable 801B-
804B | 10.05V _p and same polarity | 10.05 Vp | ОК | | 2U ₃ & 2V ₃ | For line converter bogie 2
between cable 811B-
814B | 10.05V _p and same polarity | 10.08Vp | οK | | 2U _B & 2V _B | For aux. converter 1
between cable 1103-
1117 (in HB1)
For Aux converter 2
between cable 1103-
1117 (in HB2) | 7.9V _p , 5.6V _{RMS}
and same
polarity. | 7.9 U1
5.6 VRMS) | σK | | 2U _F & 2V _F | For harmonic filter
between cable 4-12 (in
FB) | 9.12V _p ,
6.45V _{RMS} and
same polarity. | 4.10 UP
644VRMS] | oK | # 4.2 Test wiring auxiliary transformer 1000V/415V-110V (pos. 67) Apply $141V_p$ / $100V_{RMS}$ to input of the auxiliary transformer at cable no 1203 –1117 and measure the output at | Description of wire no. | Prescribed Output Voltage & Polarity with input supply. | Measured output | Measured polarity | |-------------------------|--|-----------------|-------------------| | Cable no. 1218 - 1200 | 58.7V _p , 41.5V _{RMS} and opposite polarity. | 58.6 VP | | | | | 41-5VRMS) | . OK | | Cable no. 1218 – 6500 | $15.5V_p$, $11.0V_{RMS}$ and opposite polarity. | 15.5VP | OK | 11-0 VRMS1 # PATIALA LOCOMOTIVE WORKS. PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042- Type of Locomotive: WAP-7/WAG-9HC Page: 12 of 27 #### 4.3 Primary Voltage Transformer Apply $250V_{\rm eff}/350V_{\rm p}$ by variac to roof wire 1 and any wire 0 and measure the magnitude and polarity of the output of the primary voltage transformer for both bogies as per the procedure specified and suggested by the traction converter manufacturer. Primary voltage measurement converters (Pos. 224.1/*) & catenary voltmeter (Pos. 74/*) This test is to be done for each converter. Activate cab in driving mode and supply $200V_{RMS}$ through variac to wire no 1501 and 1502. Monitor the following parameters through Diagnostic tool and in catenary voltmeter. | Signal name | Prescribed value in catenary voltmeter | Prescribed
value in
Micview | Monitored value in catenary voltmeter | Monitored value in SR diagnostic tool | |------------------|--|-----------------------------------|---------------------------------------|---------------------------------------| | SLG1 G 87-XUPrim | 25kV | 250% | 25 KV | 250% | | SLG2_G 87-XUPrim | 25 kV | 250% | 25KV | 250 % | Decrease the supply voltage below $140\ V_{RMS}$. VCB must open at this voltage. In this case the readings in Diagnostic Tool and catenary voltmeter will be as follows. | Signal name | Prescribed value in catenary voltmeter | Prescribed
value in
Micview | Monitored value in catenary voltmeter | Monitored value in SR diagnostic tool | |------------------|--|-----------------------------------|---------------------------------------|---------------------------------------| | SLG1_G 87-XUPrim | 17kV | 170% | 17KV | 170 % | | SLG2_G 87-XUPrim | 17 kV | 170% | 17KV | 170 % | Reactivate VCB to on by increasing this voltage to 175% (17.5 kV). Increase the supply to 240 V_{RMS} through variac. VCB must open at this voltage, In this case the readings in **diagnostic tool** and catenary voltmeter will be as follows: | Signal name | Prescribed value in catenary voltmeter | Prescribed value in Micview | Monitored value in catenary voltmeter | Monitored
value in SR
diagnostic
tool | |------------------|--|-----------------------------|---------------------------------------|--| | SLG1_G 87-XUPrim | 30kV | 300% | 30KV | 300% | | SLG2_G 87-XUPrim | 30 kV | 300% | 30 KV | 300 % | Reactivate VCB to on by decreasing this voltage to 290% (29 kV). Effective Date: Feb 2022 # P.L.M Doc.No.F/ECS/01 (Ref: WI/ECS/10) #### PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with</u> <u>IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 13 of 27 #### 4.4 Minimum voltage relay (Pos. 86) **Functionality test:** | Minimum voltage relay (Pos. 86) must be adju | sted to approx 68% | |--|--------------------| | Activate loco in cooling mode. Check Power supply of 48V to minimum voltage relay. Disconnect primary voltage transformer (wire no. 1511 and 1512) from load resistor (Pos. 74.2) and connect variac to wire no. 1501 and 1502. Supply 200V _{RMS} through variac. In this case; <i>Minimum voltage relay (Pos. 86) picks up</i> | (Yes/No) | | Try to activate the cab in driving mode: | /// /or 1 | | Contactor 218 do not close; the control | (yes/No) | | electronics is not be working. |] | | Turn off the variac : | | | Contactor 218 closes; the control electronics is be | (Yes/No) | | working | | | | | | Test Under Voltage Protection | <u>;</u> | | Activate the cab in cooling mode; Raise panto; | 15.7.7 | | Supply 200V _{RMS} through variac to wire no. 1501 | (Yés/No) | | & 1502; Close the VCB; Interrupt the supply | | | voltage | [| | The VCB goes off after 2 second time delay. | | | | | | Again supply 200V _{RMS} through variac to wire no. | (Yés/No) | | 1501 & 1502; Decrease the supply voltage below 140V _{RMS} ± 4V; | | | Fine tune the minimum voltage relay so that VCB opens. | | | Totale relay so that veb opens. | | ### 4.5 Maximum current relay (Pos. 78) | Disconnect wire 1521 & 1522 of primary current tra
&1522 (including the resistor at Pos. 6.11); Put loco in s
on contact 136.3; Close VCB; supply 3.6A _{RMS} at the
maximum current relay Pos. 78 for correct over current | imulation for driving mode; Open R ₃ – R ₄ | |--|--| | VCB opens with Priority 1 fault message on display. | (Yes/No) | | Keep contact R_3 – R_4 of 136.3 closed; Close VCB; Tune tf /9.9 A_p at the open wire 1521; | ne resistor 78.1 for the current of 7.0A _{RMS} | | VCB opens with Priority 1 fault message on display. | (Yés/No) | - qui Issue No.03 Effective Date: Feb 2022 # P.L.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) # PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of
Locomotive: WAP-7/WAG-9HC Page : 14 of 27 #### 4.6 Test current sensors | Name of the sensor | Description of the test | Prescribed value | Set/Measured value | |--|--|------------------------------|--------------------| | Primary return current
sensor (Test-1,Pos.6.2/1
& 6.2/2) | Activate cab in driving mode supply 10A. Measure the current through diagnostic tool or measuring print. | (Variation allowed is ± 10%) | | | Primary return current | Supply 90mA _{DC} to the test winding of sensor through connector 415.AA/1or 2 pin no. 7(+) & 8(-) | _ | | | sensor (Test-2, Pos.6.2/1
& 6.2/2) | Supply 297mA _{DC} to the test winding of sensor through connector 415.AA/1or 2 pin no. 7(+) & 8(-) | | 299ma | | Auxiliary winding current sensor (Pos. 42.3/1 & 42.3/2) | Supply 90mA _{DC} to the test winding of sensor through connector 415.AC/1or 2 pin no. 7(+) & 8(-) Supply 333mA _{DC} to the test winding of | | | | | sensor through connector 415.AC/1 or 2 pin no. 7(+) & 8(-) | | 338mA | | Harmonic filter
current sensors
(Pos.8.5/1 &8.5/2) | Supply 90mA _{DC} to the test winding of sensor through connector 415.AE/1or 2 pin no. 7(+) & 8(-) | | | | | Supply 342mA _{DC} to the test winding of sensor through connector 415.AE/1or 2 pin no. 7(+) & 8(-) | | 346 ma | | Hotel load current
sensors (Pos. 33/1 & | Switch on hotel load. Supply 90mA _{DC} to the test winding of sensor through connector 415.AG/1or 2 pin no. 7(+) & 8(-) | NA | NA | | 33/2) | Supply 1242mA _{DC} to the test winding of sensor through connector 415.AG/1or 2 pin no. 7(+) & 8(-) | NA | NA | Doc.No.F/ECS/01 (Ref: WI/ECS/10) ### PATIALA LOCOMOTIVE WO Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC 4.7 Test DC Link Voltage Sensors (Pos 15.6/*) Page: 15 of 27 This test is to be done by the commissioning engineer of the firm if required. #### 4.8 Verification of Converter Protection Circuits (Hardware limits) - This test is to be done as per para 6.17 of the document no. 3EHX 610 282 for both the converters. | Protection circuits | Limit on which shutdown | Measured limit | |--|---|---| | | should take place | | | Current sensors (Pos 18.2/1, 18.2/2, 18.2/3, 18.4/4, 18.5/1, 18.5/2, 18.5/3) for Power Converter 1 | Increase the current quickly in the test winding of the current sensors, VCB will off at 2.52A with priority 1 fault for each sensor. | For 18.2/1=
For 18.2/2=
For 18.2/3=
For 18.4/4=
For 18.5/1=
For 18.5/2=
For 18.5/3= | | Current sensors (Pos 18.2/1, 18.2/2, 18.2/3, 18.4/4, 18.5/1, 18.5/2, 18.5/3) for Power Converter 2 | Increase the current quickly in the test winding of the current sensors, VCB will off at 2.52A with priority 1 fault for each sensor. | For 18.2/1=
For 8.2/2=
For 18.2/3=
For 18.4/4=
For 18.5/1=
For 18.5/2=
For 18.5/3= | | Fibre optic failure In Power
Converter1 | Remove one of the orange fibre optic plugs on traction converter. VCB should trip | oK | | Fibre optic failure In Power
Converter2 | Remove one of the orange fibre optic plugs on traction converter. VCB should trip | OK | #### 4.9 Sequence of BUR contactors The sequence of operation of BUR contactors for 'ALL BUR OK' BUR 1 out BUR 2 out and BUR 3 out condition has to be verified by putting the Loco in driving mode (VCB should not be closed) and isolating the BURs one by one. In these condition following will be the contactor sequence. | Status | 52/1 | 52/2 | 52/3 | 52/4 | 52/5 | 52.4/1 | 52.4/2 | 52.5/1 | 52.5/2 | |-----------|-------|-------|-------|-------|-------|--------|--------|--------|--------| | AI BUR OK | Close | Open | Close | Open | Close | Open | Close | Close | Open | | BUR1 off | Close | Open | Close | Close | Open | Close | Open | Open | Close | | BUR2 off | Open | Open | Close | Close | Close | Close | Open | Open | Close | | BUR3 off | Open | Close | Open | Close | Close | Close | Open | Open | Close | (Ref: WI/ECS/10) ## PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 16 of 27 #### Monitored contactor sequence | Status | 52/1 | 52/2 | 52/3 | 52/4 | 52/5 | 52.4/1 | 52.4/2 | 52.5/1 | 52.5/2 | |-----------|-------|-------|-------|-------|-------|--------|--------|--------|--------| | AI BUR OK | CLOSE | OPEN | close | OPEN | ciose | OPEN | Close | CLOSE | olen | | BUR1 off | CLOSE | OPEN | CLOSE | CLOSE | OPEN | CLOSE | OPEN | OPEN | close | | BUR2 off | ofen | OPEN | CLOSE | CLOSE | OPEN | close | OPEN | OPEN | close | | BUR3 off | OPEN | CLUSE | OPEN | CLOSE | OPEN | close | OPEN | OPEN | CLOSE | #### 5.0 Commissioning with High Voltage #### 5.1 Check List | Items to be checked | Yes/No | |--|-----------| | Fibre optic cables connected correctly. | | | | YES | | No rubbish in machine room, on the roof, under the loco. | \ \ | | All the electronic Sub-D and connectors connected | YES | | | YES | | All the MCBs of the HB1 & HB2 open. | | | All the three fuses 40/* of the auxiliary converters | YES | | | YES | | The fuse of the 415/110V auxiliary circuit (in HB1) open. | YES | | Roof to roof earthing and roof to cab earthing done | 1 1 1 2 3 | | Fixing connection and earthing in the average of the state stat | . YES | | Fixing, connection and earthing in the surge arrestor done correctly. | Vec | | Connection in all the traction motors done correctly. | YES_ | | All the bogie body connection and earthing connection done correctly. | YES | | All the bogie body conflection and eartning connection done correctly. | | | Pulse generator (Pos. 94.1) connection done correctly. | YES | | <u> </u> | YES | | All the oil cocks of the gate valve of the transformer in open condition. | YES | | All covers on Aux & Power converters, Filter block, HB1, HB2 fitted | 165 | | | YES | | KABA key interlocking system. | YES | #### 5.2 Safety test main circuit breaker Prepare to switch off the catenary supply during the first charging of the locomotive in case of any unexpected behavior of the electrical component of the loco. Charge the loco for the first time by closing BLDJ switch. The VCB will trip after certain time as no oil/coolant pumps are running yet. Perform the following safety test of main circuit breaker through both the cabs of the locomotive. # P.L.W (Ref: WI/ECS/10) # PATIALA LOCOMOTIVE WORKS, PATIALA # <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page : 17 of 27 Doc.No.F/ECS/01 | Name of the test | Description of the test | Expected result | Monitored result | |---|--|---|------------------| | Emergency stop
in cooling mode | Raise panto in cooling mode. Put
the brake controller into RUN
position. Close the VCB.
Push emergency stop button 244. | VCB must open. Panto
must lower. Emergency
brake will be applied. | CHECKED
OK | | Emergency stop
in driving mode | Raise panto in driving mode in. Put the brake controller into RUN position. Close the VCB. Push emergency stop button 244. | VCB must open. Panto must lower. Emergency brake will be applied. | CHECKED OK | | Under voltage
protection in
cooling mode | Raise panto in cooling mode. Close the VCB. Switch off the supply of catenary by isolator | VCB must open. | CHECKED OK | | Under voltage protection in driving mode | Raise panto in driving mode. Close the VCB. Switch off the supply of catenary by isolator | VCB must open with diagnostic message that catenary voltage out of limits | CHECKED OK | | Shut down in cooling mode. | Raise panto in cooling mode.
Close the VCB. Bring the BL-
key in O position. | VCB must open. Panto must lower. | CHECKED OK | | Shutdown in driving mode | Raise panto in driving mode. Close the VCB. Bring the BL-key in O position. | VCB must open. Panto must lower. | CHECKED OK | | Interlocking
pantograph-
VCB in cooling
mode | Raise panto in cooling
mode. Close the VCB.
Lower the pantograph
by ZPT | VCB must open. | Снесрео ок | | Interlocking
pantograph-
VCB in driving
mode | Raise panto in driving mode. Close
the VCB. Lower the pantograph by
ZPT | VCB must open. | CHECKED OK | Issue No.03 Effective Date: Feb 2022 P.L.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) #### PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 18 of 27 #### 5.3 Auxiliary Converter Commissioning Switch on the high voltage supply and set up the loco in driving mode. Raise the panto. Close the VCB. Check that there is no earth fault in the auxiliary circuit, Switch off the VCB. Lower the panto. Create the earth fault in auxiliary circuit by making connection between wire no 1117(in HB2 cubicle) and earth. After 3 minutes a diagnostic message will come that "Earth fault auxiliary circuit." #### 5.3.1 Running test of 3 ph. auxiliary equipments Switch on the 3 ph. auxiliary equipment one by one. Check the direction of rotation of each auxiliary machine and measure the continuous current and starting current drawn by them. | Name of the auxiliary machine | Typical phase current | Measured continuous phase current | Measured starting phase current | |--|---|-----------------------------------|---------------------------------| | Oil pump transformer 1 | 9.8 amps | 8.7 | 4.3 | | Oil pump transformer 2 | 9.8 amps | 9.0 | 9.6 | | Coolant pump converter 1 | 19.6 amps | 5.4 | 7.0 | | Coolant pump converter 2 | 19.6 amps | 5.5 | 80 | | Oil cooling blower unit 1 | 40.0 amps | 36.0 | . 1450 | | Oil cooling blower unit 2 | 40.0 amps | 37.0 | 150.0 | | Traction motor blower 1 | 34.0 amps | 28.0 | 132.0 | | Traction motor blower 2 | 34.0 amps | 29.0 | 154.0 | | Sc. Blower to Traction
motor blower 1 | 6.0 amps | 3.0 | 7.5 | | Sc. Blower to Traction
motor blower 1 | 6.0 amps | 3.2 | 7.2 | | Compressor 1 | 25 amps at 0
kg/cm ²
40 amps at 10
kg/cm ² | 24.0 | 55.0 | | Compressor 2 | 25 amps at 0
kg/cm ²
40 amps at 10
kg/cm ² | 250 | 50.0 | # PATIALA LOCOMOTI NEW PORKS, PATIALA **Testing & Commissioning Format For 3-Phase Locomotive fitted with** IGBT based Traction Converter, Auxiliary Converter and TCN based VCU Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 19 of 27 #### 5.3.2 Performance of Auxiliary Converters Measure the performance of the auxiliary converters through software and record it. BUR1 (Condition: Switch off all the load of BUR 1)- to be filled by commissioning engineer of the firm. | Signal name | Description of the signal | Prescribed value | Monitored value | Value under
Limit (Yes/No) | |-----------------|---------------------------|------------------|-----------------|-------------------------------| | BURI 7303 XUUN | Input voltage to BUR1 | 75% (10%=125V) | 949V | YES | | | DC link voltage of BUR1 | 60% (10%=100V) | 636V | YES | | BURI 7303 XUIZI | DC link current of BUR1 | 0% (10%=50A) | I AMP | YES | BUR2 (Condition: Switch off all the load of BUR 2, Battery Charger on) to be filled by commissioning engineer of the firm. | Signal name | Description of the signal | Prescribed value by the firm | Monitored value | Value under
Limit (Yes/No) | |------------------|------------------------------------|------------------------------|-----------------|-------------------------------| | BUR2 7303-XUUN | Input voltage to BUR2 | 75% (10%=125V) | 1003V | YES | | BUR2 7303-XUUZ1 | DC link voltage of BUR2 | 60% (10%=100V) | 637V | YES. | | BUR2 7303-XUIZ 1 | DC link current of BUR2 | 1% (10%=50A)* | 7 AMP | YES | | BUR2 7303-XUILG | Current battery
charger of BUR2 | 3% (10%=100A)* | 22 AMP | Yes | | BUR2 7303-XUIB1 | Current battery of BUR2 | 1.5%(10%=100A)* | 12 AMP | yes | | BUR2 7303 -XUUB | Voltage battery of BUR2 | 110%(10%=10V) | 1100 | YES | ^{*} Readings are dependent upon charging condition of the battery. BUR3 (Condition: Switch off all the load of BUR 3, Battery Charger on) to be filled by commissioning engineer of the firm. | Signal name | Description of the signal | Prescribed set value by the firm | Monitored value | Value under
limit (Yes/No) | |---------------------|----------------------------------|----------------------------------|-----------------|-------------------------------| | BUR3 7303-XUUN | Input voltage to BUR3 | 75% (10%=125V | 1002V | YES | | BUR3 7303-
XUUZ1 | DC link voltage of BUR3 | 60% (10%=100V) | 637 V | YES
YES | | BUR3 7303-XUIZ I | DC link current
of BUR3 | 1% (10%=50A)* | 7AMP | 765
765 | | BUR3 7303-XUILG | Current battery charger of BUR 3 | 3% (10%=100A)* | 22 AMP | YES | | BUR3 7303-XUIB1 | Current battery of BUR 3 | 1.5%(10%=100A)* | 12 Ans | 7ES | | BUR3 7303-XUUB | Voltage battery
of BUR 3 | 110%(10%=10V) | 1104 | Yes | Readings are dependent upon charging condition of the battery. #### (Ref: WI/ECS/10) Doc.No.F/ECS/01 #### PATIALA LOCOMOTIVE WORKS. PATIALA Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 20 of 27 #### 5.3.3 Performance of BURs when one BUR goes out When any one BUR goes out then rest of the two BURs should take the load of all the auxiliaries at ventilation level 3 of the locomotive | Condition of BURs | Loads on BUR1 | Loads in BUR2 | Loads in BUR3 | | |-------------------|--|--|--|--------------| | All BURs OK | Oil Cooling unit
1&2 | TM blower1&2, TFP oil pump 1&2, SR coolant pump 1&2. | Compressor 1&2, Battery charger and TM Scavenger blower 1&2 | | | BUR 1 out | | Oil Cooling unit 1&2, TM
blower1&2, TM
Scavenger blower 1&2 | Compressor 1&2,TFP oil pump 1&2, SR coolant pump 1&2 and Battery charger. | CHECKE
OK | | BUR 2 out | Oil Cooling unit 1&2,
TM blower 1&2, TM
Scavenger blower 1&2 | | Compressor 1&2, TFP oil pump 1&2, SR coolant pump 1&2 and Battery charger. | | | BUR 3 out | Oil Cooling unit 1&2,
TM blower1&2, TM
Scavenger blower 1&2 | Compressor 1&2, TFP oil pump 1&2, SR coolant pump 1&2 and Battery charger. | | | #### 5.4 Auxiliary circuit 415/110 For checking earth fault detection, make a connection between wire no. 1218 and vehicle body. On switching on VCB, Earth fault relay 89.5 must pick up and after 3 minutes a message will come in the Diagnostic display that Earth Fault 415/110V Circuit Switch on the 1 ph. auxiliary equipment one by one. Check the direction of rotation of each auxiliary machine and measure the continuous current and starting current drawn by them | Name of the auxiliary machine | Typical
phase
current | Measured phase current | Measured starting current | |-------------------------------|-----------------------------|------------------------|---------------------------| | Machine room blower 1 | 15.0 amps* | 4.3 | 13.0 | | Machine room blower 2 | 15.0 amps* | 4.4 | 120 | | Sc. Blower to MR blower 1 | 1.3 amps | 1.3 | 20 | | Sc. Blower to MR blower 2 | 1.3 amps | 1-2 | 2.2 | | Ventilator cab heater 1 | 1.1 amps | 1-1 | 1.1 | | Ventilator cab heater 2 | 1.1 amps | 1.1 | 1.7 | | Cab heater 1 | 4.8 amps | 4.6 | 4.7 | | * For indigenous MR blowers | 4.8 amps | 4.7 | 4.8 | For indigenous MR blowers. Issue No.03 Effective Date: Feb 2022 (Ref: WI/ECS/10) Doc.No.F/ECS/01 #### PATIALA LOCOMOTIVE W的形成。PATIALA Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 21 of 27 #### 5.5 Hotel load circuit (Not applicable for WAG-9HC) For WAP-7 locomotive with Hotel load converter refer to Annexure-HLC #### 5.6 Traction Converter Commissioning #### This test is carried out in association with Firm. Traction converter commissioning is being done one at a time. For testing Converter 1, switch off the traction converter 2 by switch bogie cut out switch 154. For testing Converter 2, switch off the traction converter 2 by switch bogie cut out switch 154. Isolate the harmonic filter also by switch 160. Start up the loco by one converter. Follow the functionality tests. #### For Converter 1 | Test Function | Results desired | Result obtained | |---|---|-----------------| | Measurement of | Traction
converter manufacturer to | | | charging and pre-
charging and charging
of DC Link of Converter 1 | declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | Measurement of discharging of DC Link of Converter 1 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | Снескер оК | | Earth fault detection on positive potential of DC Link of Converter 1 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | Earth fault detection on
negative potential of DC
Link of Converter 1 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | Earth fault detection on AC part of the traction circuit of Converter 1 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | Pulsing of line converter of Converter 1 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | Pulsing of drive
converter of Converter 1 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHELLED OK | Issue No.03 Effective Date: Feb 2022 # Μ.Ί.Ψ Doc.No.F/ECS/01 (Ref: WI/ECS/10) #### PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with</u> <u>IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 22 of 27 #### For Converter 2 | Test Function | Results desired in sequence | Result obtained | |---|---|-----------------| | Measurement of charging and pre-charging and charging of DC Link of Converter 2 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | Measurement of discharging of DC Link of Converter 2 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | positive potential of DC
Link of Converter 2. | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | negative potential of DC
Link of Converter 2. | Traction converter manufacturer to declare the successful operation and demonstrate the same to the supervisor/v | CHECKED OK | | AC part of the traction circuit of Converter 2. | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | of Converter 2. | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | | converter of
Converter 2 | Traction converter manufacturer to declare the successful operation and demonstrate the same to the PLW supervisor. | CHECKED OK | Effective Date: Feb 2022 # W.J.q (Ref: WI/ECS/10) Doc.No.F/ECS/01 #### PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 23 of 27 #### 5.7 Test protective shutdown SR | Test Function | Results desired in sequence | Result obtained | |--|--|-----------------| | Measurement of protective shutdown by Converter 1 electronics. | Start up the loco with both the converter. Raise panto. Close VCB. Move Reverser handle to forward or reverse. Remove one of the orange fibre optic feedback cable from converter 1Check that converter 1 electronics produces a protective shut down. • VCB goes off • Priority 1 fault mesg. on DDU appears | > CHECKED OK | | · | Disturbance in Converter 1 | | | Measurement of protective shutdown by Converter 2 electronics. | Start up the loco with both the converter. Raise panto. Close VCB. Move Reverser handle to forward or reverse. Remove one of the orange fibre optic feedback cable from converter 2. Check that converter 2 electronics produces a protective shut down. • VCB goes off • Priority 1 fault mesg. on diagnostic display appears Disturbance in Converter 2 | >CHECKED OK | #### 5.8 Test Harmonic Filter Switch on the filter by switch 160 | Test Function | Results desired in sequence | Result obtained | | | |---------------|---|-----------------|--|--| | currents | Start up the loco with both the converter. Raise panto. Close VCB. Move Reverser handle to forward or reverse. Apply a small value of TE/BE by moving the throttle. • FB contactor 8.41 must open. | CHECKED OK | | | # P.L.W Doc.No.F/ECS/01 (Ref: WI/ECS/10) #### PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 24 of 27 | Test earth fault | FB contactor 8.2 must close. FB contactor 8.1 must close Check the filter current in diagnostic laptop Bring the TE/BE throttle to O Switch off the VCB FB contactor 8.1must open. FB discharging contactor 8.41 must close Check the filter current in diagnostic laptop Make a connection between wire | CHECKED OK | |---|--|------------| | detection harmonic filter circuit. | no. 12 and vehicle body. Start up the loco. Close VCB. • Earth fault relay 89.6 must pick up. • Diagnostic message comes that - Earth fault in harmonic filter circuit | CHECKED OK | | Test traction motor speed sensors for both bogie in both cabs | Traction converter manufacturer to declare the successful operation and demonstrate the same to the supervisor/ PLW | OK | # 5.9 Test important components of the locomotive | Items to be tested | Description of the test | Monitored value/remarks | |-----------------------------------|--|-------------------------| | Speedometer | VCU converter manufacturer to declare the successful operation and demonstrate the same to the supervisor/ PLW | CHECKED OK | | Time delay module
of MR blower | The time after which the starting capacitor for MR blower should go off the circuit should be set to 10-12 seconds | CHECKED OK | | Ni-Cd battery voltage | At full charge, the battery voltage should be 110V DC. | CHECKED OK | | Flasher light | From both cab flasher light should blink at least 65 times in one minute. | CHECKED OK | | Head light | Head light should glow from both cabs by operating ZLPRD. Dimmer operation of headlight should also occur by operating the switch ZLPRD. | CHECKED OK | Effective Date: Feb 2022 # **b'F'M** Doc.No.F/ECS/01 (Ref: WI/ECS/10) #### PATIALA LOCOMOTIVE WORKS, PATIALA <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with</u> <u>IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 25 of 27 | Marker light | Both front and tail marker light should glow from both the cabs | CHECKED OK | |--|--|--| | Cab Light | Cab light should glow in both the cabs by operating the switch ZLC | CHECKED OK | | Spot lights | Both Drivers and Asst. Drivers Spot light should glow in both cabs by operating ZLDD | CHECKED OK | | Instrument lights | Instrument light should glow from both cab by operating the switch ZLI | CHECKED OK | | Illuminated Push
button | All illuminated push buttons should glow during the operation | CHECKED OK | | Contact pressure of the high rating contactors | The contact pressure of FB contactors (8.1, 8.2) is to be measured Criteria: The minimum contact pressure is 54 to 66 Newton. | For contactor 8.1: For contactor 8.2: | | Crew Fan | All crew fans should work properly when VCB of the loco is switched on. The airflow from each cab fan is to be measured. Criteria: The minimum flow of air of cab fan should be 25 m³/minute | Cab 1 LHS:
Cab 1 RHS:
Cab 2 LHS:
Cab 2 RHS: | # 6.0 Running Trial of the locomotive | SN | Description of the items to be seen during trail run | Action which should take place | Remarks | | |----
--|--|----------------|--| | 1 | Cab activation in driving mode | No fault message should appear on the diagnostic panel of the loco. | CHECKED | | | | Loco charging | Loco to be charged and all auxiliaries should run. No fault message to appear on the diagnostic panel of the loco. Raise MR pressure to 10 Kg/cm ² , BP to 5 Kg/cm ² , FP to 6 Kg/cm ² . | CHECKED
OK | | | 3. | Check function of
Emergency push stop. | This switch is active only in activated cab. By pushing this switch VCB should open & pantograph should be lowered. | CHECKED
OK | | | 4. | Check function of BPCS. | Beyond 5 kmph, press BPCS, the speed of loco should be constant. BPCS action should be cancelled by moving TE/BE throttle, by dropping BP below 4.75 Kg/cm², by pressing BPCS again. | CHECKE P
OK | | | 5. | Check train parting operation of the Locomotive. | Operate the emergency cock to drop the BP Pressure LSAF should glow. | CHECKED | | Signature of the JE/SSE/Loco Testing OIL # PATIALA LOCOMOTI**VE VIO**RKS, PATIALA Doc.No.F/ECS/01 (Ref: WI/ECS/10) # Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 26 of 27 | 6. | Check vigilance | Sat the speed mare than 1 E lemph and ensure that | |--------|----------------------------|---| | • | operation of the | Set the speed more than 1.5 kmph and ensure that | | | locomotive | brakes are released i.e. BC < 1 Kg/cm ² . | | | locomotive | For 60 seconds do not press vigilance foot switch or | | | | sanding foots switch or TE/BE throttle or BPVG | | | | switch then | | | | Buzzer should start buzzing. | | | | LSVW should glow continuously. | | | · | Do not acknowledge the alarm through BPVG or | | | | vigilance foot switch further for 8 seconds then:- | | | | Emergency brake should be applied: | | | | automatically. | | | • | VCB should be switched off. | | | | Resetting of this penalty brake is possible only after | | | • | 32 seconds by bringing TE/BE throttle to 0 and | | | | acknowledge BPVR and press & release vigilance | | | | foot switch. | | 7.
 | Check start/run interlock | • At low pressure of MR (< 5.6 Kg/cm ²). | | | | With park brake in applied condition. | | ļ | | • With direct loco brake applied (BP< 4.75Kg/cm ²). | | | | • With automatic train brake applied (BP<4.75Kg/cm²). | | | ' | • With emergency cock (BP < 4.75 Kg/cm ²). | | 8. | Check traction interlock | Switch of the brake electronics. The | | | • | Tractive / Braking effort should ramp down, VCB | | | | should open and BP reduces rapidly. | | 9. | Check regenerative | Bring the TE/BE throttle to BE side. Loco speed | | | braking. | should start reducing. | | 10. | Check for BUR | In the event of failure of one BUR, rest of the two | | | redundancy test at | BURs can take the load of all the auxiliaries. For this | | | ventilation level 1 & 3 of | switch off one BUR. | | | loco operation | Auxiliaries should be catered by rest of two BURs. | | - 1.1 | | Switch off the 2 BURs; loco should trip in this case. | | 11. | Check the power | Create disturbance in power converter by switching | | | converter | off the electronics. VCB should open and converter | | | isolation test | should get isolated and traction is possible with | | ·] | | another power converter. | Issue No.03 Effective Date: Feb 2022 #### **M'7'd** <u>Patiala locomotive</u> works, patiala Doc.No.F/ECS/01 (Ref: WI/ECS/10) <u>Testing & Commissioning Format For 3-Phase Locomotive fitted with IGBT based Traction Converter, Auxiliary Converter and TCN based VCU</u> Locomotive No.: 42042 Type of Locomotive: WAP-7/WAG-9HC Page: 27 of 27 ### 7.0 Final check list to be verified at the time of Loco dispatch Condition /Operations of the following items are to be checked: | SN | Item | Cab-1 | Cab-2 | Remarks | |----|-----------------------------------|-------|-------|--------------------| | 1 | Head lights | οΚ | OK) | | | 2 | Marker Red | oK | OK | | | 3 | Marker White | oK | OK | | | 4 | Cab Lights | OK | oK. | | | 5 | Dr Spot Light | OK | ok | | | 6 | Asst Dr Spot Light | OK | OK | CHECKED WORKING OK | | 7 | Flasher Light | οK | oK | CHECKED WORKING OK | | 8 | Instrument Lights | OK | OK | | | 9 | Corridor Light | OK | øK | | | 10 | Cab Fans | OK | OK | | | 11 | Cab Heater/Blowers | OK | σK | | | 12 | All Cab Signal Lamps
Panel 'A' | OK | ok) | | # Status of RDSO modifications LOCO NO: 42041 | Sn | Modification No. | Description | Remarks | |-----|--|--|--------------------| | 1. | RDSO/2008/EL/MS/0357 | Modification in control circuit of Flasher Light and Head Light of | | | | Rev.'0' Dt 20.02.08' | three phase electric locomotives. | Ok/Not Ok | | 2. | RDSO/2009/EL/MS/0377
Rev.'0' Dt 22.04.09 | Modification to voltage sensing circuit in electric locomotives. | OK/Not Ok | | 3. | RDSO/2010/EL/MS/0390
Rev.'0' Dt 31.12.10 | Paralleling of interlocks of EP contactors and Relays of three phase locomotives to improve reliability. | Øk/Not Ok | | 4. | RDSO/2011/EL/MS/0399
Rev.'0' Dt 08.08.11 | Removal of interlocks of control circuit contactors no. 126 from MCPA circuit. | Ok/Not Ok | | 5. | RDSO/2011/EL/MS/0400
Rev.'0' Dt 10.08.11 | Modification sheet for shifting the termination of \$GKW, 1.8 KV, 70 sq mm cables and 2x2.5 sq mm cables housed in lower portion of HB2 panel and provision of Synthetic resin bonded glass fiber sheet for three phase locomotives. | Ok/Not Ok | | 6. | RDSO/2011/EL/MS/0401
Rev.'0' Dt 10.08.11 | Modification sheet for relaying of cables in HB-2 panel of three phase locomotives to avoid fire hazards. | Ok/Not Ok | | 7. | RDSO/2011/EL/MS/0403
Rev.'0' Dt 30.11.11 | Auto switching of machine room/corridor lights to avoid draining of batteries in three phase electric locomotives. | Øk/Not Ok | | 8. | RDSO/2012/EL/MS/0408
Rev.'0' | assembly. | Ok/Not Ok | | 9. | RDSO/2012/EL/MS/0411
Rev.'1' dated 02.11.12 | Modification sheet to avoid simultaneous switching ON of White and Red marker light in three phase electric locomotives. | OK/Not Ok | | 10 | RDSO/2012/EL/MS/0413
Rev.'1' Dt 25.04.16 | Paralleling of interlocks of EP contactors and auxiliary contactors of three phase locomotives to improve reliability. | OK/Not Ok | | 11 | RDSO/2012/EL/MS/0419
Rev.'0' Dt 20.12.12 | Modification sheet to provide rubber sealing gasket in Master Controller of three phase locomotives. | Øk/Not Ok | | 12 | RDSO/2013/EL/MS/0420
Rev.'0' Dt 23.01.13 | Modification sheet to provide mechanical locking arrangement in
Primary Over Current Relay of three phase locomotives. | OK/Not Ok | | 13 | RDSO/2013/EL/MS/0425
Rev.'0' Dt 22.05.13 | Modification sheet for improving illumination of head light in dimmer mode in three phase electric locomotives. | Øk/Not Ok | | 14 | RDSO/2013/EL/MS/0426
Rev.'0' Dt 18.07.13 | Modification sheet of Bogie isolation rotary switch in three phase electric locomotives. | Ok/Not Ok | | 15 | RDSO/2013/EL/MS/0427
Rev.'0' Dt 23.10.13 | Modification sheet for MCP control in three phase electric locomotives. | Ok/Not Ok | | 16 | RDSO/2013/EL/MS/0428
Rev.'0' Dt 10.12.13 | Modification sheet for relocation of earth fault relays for harmonic filter and hotel load along with its resistors in three phase electric locomotives. | 2 ΘK/Not Ok | | 17 | RDSO/2014/EL/MS/0432
Rev.'0' Dt 12.03.14 | Removal of shorting link provided at c-d terminal of over current relay of three phase electric locomotives. | Ok/Not Ok | | 18 | RDSO/2017/EL/MS/0464
Rev.'0' Dt 25.09.17 | Provision of Auxiliary interlock for monitoring of Harmonic filter ON (8.1)/adoption (8.2) Contactor in GTO/IGBT locomotives. | ØK/Not Ok | | 19 | RDSO/2017/EL/MS/0467
Rev.'0' Dt 07.12.17 | Modification in blocking diodes to improve reliability in three phase electric locomotives. | Ok/Not Ok | | .20 | RDSO/2018/EL/MS/0475
Rev.'0' | Modification in existing Control Electronics (CE) resetting scheme of 3 phase electric locomotives. | Øk/Not Ok | | 21 | RDSO/2019/EL/MS/0477
Rev.'0' Dt 18.09.19 | Implementation of push pull scheme. | Øk/Not Ok | | 22 | RDSO/2024/EL/MS/0500
Rev '0' Dt. 13.09.2024 | Recording of Flasher light operation either due to fault or manually by Loco Pilot in case of emergency with time stamping in VCU of 3-phase Electric Locomotives. | Øk/Not Ok | | 23 | RDSO/2024/EL/MS/0502
Rev '0' Dt 10.10.2024 | Unloader valve control circuit modification in three Phase Electric Locomotives. | Ok/Not Ok | | 24 | RDSO/2024/EL/MS/0503
Rev '0' Dt 17.09.2024 | Paralleling of interlocks of control circuit contactor to improve reliability of three phase electric locomotives | Ok/Not Ok | | 25 | RDSO/2024/EL/MS/0504
Rev '0' Dt 21.11.2024 | Isolation of Harmonic Filter from 3-phase locomotives fitted with M/s Alstom (BTIPL), CGPISL and Medha make IGBT based Propulsion Equipment | Cok/Not Ok | Signature of JE/SSE/ECS | - | | TIVE WORKS, PATIA
12042/CR/BSLL / U | | | | |--|--|--|---
---|--| | Equipment | PL No. | | nt Serial No. | Ma | ike | | lete Shell Assembly with piping | 29171027 | 08/17 | 1, 06/25 | Chandra | Udyog | | Buffer Assly Both Side Cab I | | 19, 11/24 | 329, 02/25 | AEU | AEU | | Buffer Assly Both Side Cab II | 29130050 | 320, 02/25 | 433, 02/25 | AEU | AEU | | ab I & II | 29130037 | 132, 11/24 | 123, 11/24 | FASP | FASP • | | Brake | | | 12-5/25 | Mechwe | I SSI I Init | | Diake | 29045034 | 100- | +2-3/23 | + | | | Secondry Helical Spring | 29043034 | | | Frontio | Y | | ry Boxes (both side) | 29680013 | 154, 03/25 | 174, 03/25 | BHARTIA BRIGHT | BHARTIA BRIGHT | | on Bar Bogie I | | 8926 | 5, 04/25 | KI | M | | on Bar Bogie II | | 8899 |), 04/25 | KI | M | | e Pivot Housing in Shell Bogie I side | 29100057 | 461, | , 02/25 | AN | IIL | | e Pivot Housing in Shell Bogie II side | 23100037 | 495, | , 02/25 | AN | IIL | | Ring in Front in Shell Bogie I side | 29100010 | 05/26 | 6, 10/24 | SS | PL | | Ring in Front in Shell Bogie II side | 29100010 | 05/07 | 7, 10/24 | · SS | PL | | Transformer | 29731008 for WAG 9
29731057 for WAP-7 | MIPL-65-03- | -25-0007, 2025 | MAH | HATI | | oling Radiator I . | 20470004 | 03/25, p0 | 0325RC2823 | fine AUTO | OMOTIVE | | oling Radiator II | 29470031 | 03/25, p0 | 0325RC2812 | Fine AUT | OMOTIVE | | Compressor I with Motor | | EXGS 923 | 3598, 10/24 | EL | Gi | | Compressor II with Motor | 29511008 | | 5136, 03/25 | . EL | | | former Oil Cooling Pump I | | | 4102, 2024 | | | | | + | | 4110, 2024 | FLOWOIL | | | former Oil Cooling Pump II | | | | FLOWOIL
PD STEEL | | | ooling Blower OCB I | 29470043 | | 28, LHP1001610299 | PD STEEL | | | oling Blower OCB II | | 01/25, PDS2501027, LHP1001610298 | | | | | ower I | 29440075 | 02/25, 24P6794AF13 , 24P6794/13 | | SAINI . | | | ower II | | 02/25, 24P6794 | AF37, 24P6794/37 | SA | INI | | ine Room Blower I | 29440105 | 03/25, D42-61 | L75, MF42/D,6222 | SAN | ИAL | | ine Room Blower II | 25440105 | 01/25, AC-6133 | 5, CGLXKCM11442 | AC | CEL | | ine Room Scavenging Blower I | 29440129 | 03/25, AC-6184 | 9, CGLYBCM13936 | AC | CEL | | ine Room Scavenging Blower II | 29440129 | 03/25, S | M-25.03.65 | G ⁻ | ΓR | | cavenging Blower Motor I | 29440117 | 05/25, 24P8000 | ÄF23,24P8000/23 | SA | INI | | cavenging Blower Motor II | 29440117 | | | | | | on Convertor I | | ATIL/12/2024/13 | PROPULSION/4266 | | | | on Convertor II | | ATIL/12/2024/13 | PROPULSION/4265 | | | | le Control Unit I | 29741075 | ATIL/12/2024/13 | /PROPULSION/4265 | BI | TIL | | le Control Unit II | 257,12075 | | PROPULSION/4266 | | | | Converter Box I (BUR 1) | | | /10257/31A/1286 | | | | Converter Box 2 (BUR 2 + 3) | | | /10257/31B/1286 | | | | ry Control Cubical HB-1 | 29171180 | 04/25, HB1, | /1016/04/2025 | | | | ry Control Cubical HB-2 | 29171192 | 02/25 444402 | 2025 IOE ICD 140 I - 4 | 10 | Λ1 | | | - | | | T D . A | 4 | | Cubical (FB) (COMPLETE FILTER | 29480140 | | | HIND RE | CTIFIERS | | | 20171121 | A/25 1F2 | 183 1/5 100 | TADI | IDEED | | | | | | TARU | DELF | | former oil steel pipes | | | | 1 | 27/4 | | ervator Tank Breather | | | | YOU | GYA • | | t Assembly (only for WAG-9) | 29170163 | | | - | | | CLES) r Seats former cervator 1 | oil steel pipes
Tank Breather | trol Cubicle SB-2 29171210 (FB) (COMPLETE FILTER 29480140 29171131 bil steel pipes 29230044 Tank Breather 29731057 | trol Cubicle SB-2 29171210 KPL/SB2 (FB) (COMPLETE FILTER 29480140 FB/2025/ 29171131 4/25- 153, bil steel pipes 29230044 Vikrai Fank Breather 29731057 24-1506 | trol Cubicle SB-2 29171210 KPL/SB2/2502/103 (FB) (COMPLETE FILTER 29480140 FB/2025/D/0274/652 29171131 4/25- 153, 183, 145, 100 oil steel pipes 29230044 Vikrant PIPES Tank Breather 29731057 24-1506B,24-15069 bly (only for WAG-9) 29170163 11,73 | trol Cubicle SB-2 29171210 KPL/SB2/2502/103 (FB) (COMPLETE FILTER 29480140 FB/2025/D/0274/652 HIND RE 29171131 4/25- 153, 183, 145, 100 TARU oil steel pipes 29230044 Vikrant PIPES Tank Breather 29731057 24-1506B,24-15069 YOU bly (only for WAG-9) 29170163 11,73 | NAME Shuamm smam SSE/LAS NAME ANKIT UPPAL JE/LAS/UF Issue No.: 05 Effective Date: July-2023 DOC NO: F/LAS/Electric Loco CHECK SHEET (Ref: WI/LAS/Elect/01, 02, 03 & 04 & QPL/LAS/Elect. Loco) Page 1 of 1 #### पटियाला रेलइंजन कारखाना, पटियाला PATIALA LOCOMOTIVE WORKS, PATIALA **ELECTRIC LOCO CHECK SHEET** LOCO NO: 42042 Shed: BSLL | S.
No. | ITEM TO BE CHECKED | Specified Value | C | bserve | d Val | ue | |-----------|--|---------------------------|----------|------------|-------|-------| | 1.1 | Check proper Fitment of Hotel Load Converter & its output contactor. | OK | | - N | 1 | _ | | 1.2 | Check proper Fitment of MR Blower 1 & 2, MR Scavenging Blower 1 & 2, TM Blower 1 & 2, TMB Scavenging Blower 1 & 2. TM scavenging blower 1 & 2 & Oil Cooling unit. | ОК | | | K | | | 1.3 | Check proper of Fitment of oil cooling unit (OCU). | OK | | (| 3/2 | | | 1.4 | Check proper Fitment of HB 1 & 2 and its respected lower part on its position. | OK | | (| OLL | | | 1.5 | Check proper Fitment of FB panel on its position. | OK | | | 5/2 | | | 1.6 | Check proper Fitment of assembled SB1 & SB2 panel. | OK | | | OLL | | | 1.7 | Check proper Fitment of Auxiliary converter 1, 2 & 3-(BUR-1, 2 & 3). | OK | | 92 | | | | 1.8 | Check proper Fitment of Traction converter 1 & 2 (SR-1 & 2). | OK | | | 0/2 | | | 1.9 | Check proper fitment, torquing & Locking of Main Transformer bolt. | OK | | | 0/ | | | 1.10 | Check proper fitment of Main compressor both side with the compressor safety wire rope. | OK | | d/L | | _ | | 1.11 | Check proper resting of Secondary Helical Springs between Bogie & Shell body. | OK | | | 0/2 | | | 1.12 | Check proper fitment of Bogie Body Safety Chains. | OK | | -04/10 | 01 | | | 1.13 | Check proper fitment of Cow catcher. | OK | | | VI | | | 1.14 | Check coolant level in SR 1 & 2 Expansion Tank. | OK | | | 0/4 | | | 1.15 | Check Transformer Oil Level in both conservators Tank (Breather Tank). | OK | | | 01 | C | | 1.16 | Check proper fitment and maintain required gaps from Loco Shell Body of all metallic pipes to avoid any damage during online working of Locomotives. | OK | | 0/2 | | 2 | | 1.17 | Check proper fitment of both battery box. | OK | | ar | | 1 | | 1.18 | Check for any gap between Main Transformer mounting base & Loco Shell. | OK | | | d | 1 | | 1.19 | Check proper fitment of Push Pull rod its bolt torquing and fitment of fixing cable. As per Drg No 1209-01-113-001 | OK | | 0/2 | | | | 1.20 | Secondary Vertical and Lateral Clearance on leveled track at the time of Loco Dispatch. | Vertical-Std
:35-60 mm | CA | B-1 | | CAB-2 | | | ELRS/TC/ 0082 (Rev 1) dated 17.09.2015 | | LP | ALP | LP | ALP | | | | | 48 | 44 | 46 | 41 | | | | Lateral Std- | 55 | 43 | 52 | 1 | | 1.21 | Buffer height: Range (1090, +15,-5) | 45-50 mm
1085-1105 | | T L/ | | R/S | | 1.21 | Drg No IB031-02002. | mm | | | | | | | big No 15031-02002. | | FRONT | 100 | 14 | 1095 | | | | | REAR | 100 | 93 | 1096 | | 1.22 | Buffer Length: Range (641 mm + 3 to 10 mm with buffer face) | 641 mm | | L | S | R/S | | | Drg No-SK.DL-3430. | | FRONT | 65 | in | 647 | | | | | REAR | 641 | | 644 | | 1.23 | Height of Rail Guard. (114 mm + 5 mm,-12 mm). | 114 mm + 5 | TALATA | 641
 U | | R/S | | 1.23 | As per RDSO Pamphlet Important Bogie Clearances of Electric Locomotives. | mm,-12 mm | FRONT | | | | | | 7.0 por 1.200 . ampinet important bogie ordinanos er Electric Eccomotivos. | 11111,- 12 HHIII | FRONT | 110 | | 119 | | , | | | REAR 113 | | | 110 | | 1.24 | CBC Height: Range (1090, +15,-5) | 1090, +15 | | | | | | | Drg No- IB031-02002. | -5 mm | REAR: | 1101 | | | (Signature of SSE/Elect. Loco) NAME SHUBBAN Sha Pope DATE 22.06.2025 (Signature of /JE/Elect Loco) NAME Paymorg Mem DATE 22.06.2025 Aux 7 Uhral (Signature of JE/UF) NAME ANKIT UPPAL DATE 22.06.2025 #### **Loco No.** 42042 #### 1. BOGIE FRAME: | BOGIE | FRAME NO | Make | PL No. | PO No. & dt. | Warranty Period | |-------|----------|------|----------|--------------|-----------------| | FRONT | SL-479 | ECBT | 29101104 | 102079 | As per PO/IRS | | REAR | SL-478 | ECBT | 29101104 | 102079 | conditions | #### 2. Hydraulic Dampers (PL No.29040012) Make: KNORR / KNORR #### 3. AXLES: | AXLE POSITION NO | 1 | 2 | 3 | 4 | 5 | 6 | |--------------------|-------|-------|-------|-------|-------|-------| | MAKE/ | PLW | PLW | PLW | PLW | PLW | PLW | | S.NO | 28653 | 28748 | 28649 | 28953 | 28754 | 28661 | | Ultrasonic Testing | OK | OK | OK | OK | OK | OK | #### 4. WHEEL DISCS NO. AND TYPE & BULL GEAR | AXLE POSITION NO | 1 | 2 | 3 | 4 | 5 | 6 | |------------------|------------|------------|------------|------------|------------|------------| | GEAR END | EV56-086 | EV70-052 | EV43-011 | EV64-079 | EV36-064 | EV91-056 | | Make | IMPORTED | IMPORTED | IMPORTED | IMPORTED | IMPORTED | IMPORTED | | FREE END | EV62-024 | EV36-030 | EV24-093 | EV64-082 | EV37-107 | EV39-041 | | Make | IMPORTED | IMPORTED | IMPORTED | IMPORTED | IMPORTED | IMPORTED | | Bull Gear No. | 25-B-16153 | 25-C-12125 | 25-C-15111 | 25-B-16152 | 25-B-15132 | 25-C-16166 | | Bull Gear Make | KPCL | KPCL | KPCL | KPCL | KPCL | KPCL | ### 5. AXLE ROLLER BEARING (CRU) (PL No. 29010020, Warranty: As per PO/IRS conditions) | | AXLE POSITION NO | 1 | 2 | 3 | 4 | 5 | 6 | |------|------------------|-------|-------|-------
-------|-------|-------| | Gear | MAKE | NBC | FAG | FAG | FAG | FAG | FAG | | End | PO NO. & dt | 02311 | 02312 | 02312 | 02312 | 02312 | 02312 | | Free | MAKE | NBC | FAG | FAG | FAG | FAG | FAG | | End | PO NO. & dt | 02311 | 02312 | 02312 | 02312 | 02312 | 02312 | ### 6. WHEEL DISC PRESSING PRESSURE IN KN: (SPECIFIED 80-105 T) | AXLE POSITION NO | 1 | 2 | 3 | 4 | 5 | 6 | |------------------|-------|--------|---------|--------|--------|------| | BULL GEAR END | 87 T | 841 KN | 1003 KN | 927 KN | 811 KN | 80 T | | FREE END | 103 T | 915 KN | 879 KN | 854 KN | 819 KN | 88 T | #### Loco No. 42042 #### 7. DIAMETER AFTER PROFILE TURNING: SPECIFIED 1092 + .5 mm - 0 mm | AXLE POSITION NO | 1 | 2 | 3 | 4 | 5 | 6 | |-------------------------------------|--------|--------|--------|--------|--------|--------| | DIA IN mm GE | 1092.5 | 1092.5 | 1092.5 | 1092.4 | 1092.5 | 1092.5 | | DIA IN mm FE | 1092.5 | 1092.5 | 1092.5 | 1092.4 | 1092.5 | 1092.5 | | WHEEL PROFILE
GAUGE (1596±0.5mm) | OK | OK | OK | OK | OK | OK | #### 8. SUSPENSION TUBE & ITS TAPER ROLLER BEARING: | AXLE POSITION | NO | 1 | 2 | 3 | 4 | 5 | 6 | |---------------------|------|-----|-----|-----|-----|-----|-----| | S.T. PL 29100288 | MAKE | IN | IN | IN | IN | IN | IN | | GE Brg. PL 29030110 | MAKE | FAG | FAG | FAG | FAG | FAG | FAG | | FE Brg. PL 29030110 | MAKE | FAG | FAG | FAG | FAG | FAG | FAG | #### 9. GEAR CASE (PL No. 29030018) & BACKLASH: | AXLE POSITION NO | 1 | 2 | 3 | 4 | 5 | 6 | |-------------------------------|-------|-------|-------|-------|-------|-------| | MAKE | KPE | KPE | PEPL | EEE | EEE | KPE | | BACKLASH
(0.254 – 0.458mm) | 0.360 | 0.290 | 0.340 | 0.325 | 0.330 | 0.300 | #### 10 A/BOX TO BOGIE FRAME LATERAL CLEARANCES (SPECIFIED 15.0 to 19.0mm): | AXLE POSITION NO | 1 | 2 | 3 | 4 | 5 | 6 | |------------------|-------|-------|-------|-------|-------|-------| | RIGHT SIDE | 16.72 | 17.40 | 15.65 | 15.49 | 17.36 | 15.55 | | LEFT SIDE | 16.08 | 17.53 | 15.73 | 16.91 | 16.23 | 16.61 | ### 11. TRACTION MOTOR: (PL No.29940606, Warranty: As per PO/IRS conditions) | AXLE POSITION NO | MAKE | PO No. & Date | S. NO. | |------------------|----------------|---------------|---------------| | 1 | PIONEER | 102028 | 318A24918 | | 2 | TMS | | PLW-3437 | | 3 | PIONEER | 102028 | 318A241001 | | 4 | PIONEER | 102028 | 318A241000 | | 5 | HIND RECTIFIER | 101655 | 237010154/049 | | 6 | PIONEER | 102028 | 318A24994 | JE/SSE/ Bogie Shop #### ULTRASONIC TESTING REPORT | Date and TimeDt:27/5/2025 Tm:10:21 | | |--|---------------------| | UFD Model: <u>Arya 1(R)</u> Sr No: <u>AA0362-422</u> 0 | | | Railway/Workshop: BS PLW | | | Type of Axle/wheel: WAG9 | Axle/wheel No:28653 | | Operator Name/Code : RAMVEER MEENA | | | Defect Location GE | | | Test Results (Pass/Fail/other): | | | If other, then Remarks | | | Frame No: ASC81 * | | #### (A-Scan) Data Setup Gain: 38.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Observation/Remarks (If Any): #### ULTRASONIC TESTING REPORT #### (A-Scan) Frame No: ASC82 * Gain: 38.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Observation/Remarks (If Any): Data Setup #### ULTRASONIC TESTING REPORT | Date and TimeDt:27/5/2025 Tm:10:21 | | |--|---------------------| | UFD Model: Arya 1(R) Sr No:AA0362-4220 | | | Railway/Workshop: BS PLW | | | Type of Axle/wheel: WAG9 | Axle/wheel No:28653 | | Operator Name/Code : RAMVEER MEENA | | | Defect Location GE | | | Test Results (Pass/Fail/other): | | | If other, then Remarks | | | Frame No: ASC83 * | | #### (A-Scan) Data Setup Gain: 39.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Observation/Remarks (If Any): ### (A-Scan) Data Setup Gain: 39.0 dB RANGE: 2500.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 0.0DEG THICK: 100.00mm Gate 1 (Status): OFF Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:10:22 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28653 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC85 * ### (A-Scan) Data Setup Gain: 49.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 10.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time.......:Dt:27/5/2025 Tm:10:22 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28653 Operator Name/Code: RAMVEER MEENA Defect Location: GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC86 * ### (A-Scan) Data Setup Gain: 49.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 10.0DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time.......:Dt:27/5/2025 Tm:10:22 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28653 Operator Name/Code: RAMVEER MEENA Defect Location: GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC87 * ## (A-Scan) Data Setup Gain: 45.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 10.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:10:22 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28653 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC88 * ### (A-Scan) Data Setup Gain: 45.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 10.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:10:23 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28653 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC89 * ## (A-Scan) Data Setup Gain: 53.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time.......Dt:27/5/2025 Tm:10:23 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28653 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC90 * ### (A-Scan) Data Setup Gain: 53.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:10:23 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: <u>BS PLW</u> Type of Axle/wheel....: WAG9 Axle/wheel No:28653 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC91 * ### (A-Scan) Data Setup Gain: 53.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo
height): PROBE ANGLE: 17.5DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:10:23 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28653 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC92 * ## (A-Scan) Data Setup Gain: 53.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:10:27 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: <u>BS PLW</u> Type of Axle/wheel: WAG9 Axle/wheel No:28653 Operator Name/Code : RAMVEER MEENA Defect Location FE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC93 * ## (A-Scan) Data Setup Gain: 49.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:10:28 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28653 Operator Name/Code : RAMVEER MEENA Defect Location FE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC94 * ## (A-Scan) Data Setup Gain: 53.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 17.5DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:10:28 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: <u>BS PLW</u> Type of Axle/wheel....: WAG9 Axle/wheel No:28653 Operator Name/Code : RAMVEER MEENA Defect Location FE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC95 * ### (A-Scan) Data Setup Gain: 52.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:10:28 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: <u>BS PLW</u> Type of Axle/wheel No:28653 Operator Name/Code : RAMVEER MEENA Defect Location FE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC96 * ## (A-Scan) Data Setup Gain: 52.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm EJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 17.5DEG Gate 2(Beam Path): mn PROBE ANGLE: 17.5DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:10:29 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28653 Operator Name/Code : RAMVEER MEENA Defect Location FE Test Results (Pass/Fail/other): If other, then Remarks..... ### (A-Scan) Frame No: ASC97 * Data Setup Gain: 42.0 dB RANGE: 2500.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 0.0DEG THICK: 100.00mm Gate 1 (Status): OFF Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm | Date and TimeDt:27/5/2025 Tm:10:29 | | |--|---------------------| | UFD Model: <u>Arya 1(R)</u> Sr No: <u>AA0362-422</u> 0 | | | Railway/Workshop: BS PLW | | | Type of Axle/wheel: WAG9 | Axle/wheel No:28653 | | Operator Name/Code : RAMVEER MEENA | | | Defect Location FE | | | Test Results (Pass/Fail/other): | | | If other, then Remarks | | ## (A-Scan) Data Setup Gain: 39.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Observation/Remarks (If Any): Frame No: ASC98 * | Date and TimeDt:27/5/2025 Tm:10:29 | | |--|---------------------| | UFD Model: <u>Arya 1(R)</u> Sr No: <u>AA0362-422</u> 0 | | | Railway/Workshop: BS PLW | | | Type of Axle/wheel: WAG9 | Axle/wheel No:28653 | | Operator Name/Code : RAMVEER MEENA | | | Defect LocationFE | | | Test Results (Pass/Fail/other): | | | If other, then Remarks | | | Frame No: ASC99 * | | ## (A-Scan) Data Setup Gain: 39.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time.......:Dt:27/5/2025 Tm:10:29 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28653 Operator Name/Code: RAMVEER MEENA Defect Location: FE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC100 * ## (A-Scan) Data Setup Gain: 41.0 dB RANGE: 2500.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 0.0DEG THICK: 100.00mm Gate 1 (Status): OFF Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 34.3 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | :0° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | | ate Measure | | |----------|---------------|-------------|----------|---------------------------|-------------|----------------------------------| | Gain | : 34.3 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | Velosity | : 5910 m/sec | Probe Angle | :0° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | | ate Measure | | |----------|---------------|-------------|----------|---------------------------|-------------|----------------------------------| | Gain | : 34.3 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | Velosity | : 5910 m/sec | Probe Angle | :0° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|---------------------------|--------|--| | Gain | : 34.3 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status | : OFF | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) | : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 0° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) | : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) | : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth)
 : 0 mm | Gate 2 (Depth) | : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 45.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 10° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|---------------------------|--------|--| | Gain | : 45.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status | : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) | : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 10° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) | : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) | : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) | : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | | ate Measure | | |----------|---------------|-------------|----------|---------------------------|-------------|----------------------------------| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | Velosity | : 5910 m/sec | Probe Angle | : 10° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | | ate Measure | | |----------|---------------|-------------|----------|---------------------------|-------------|----------------------------------| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | Velosity | : 5910 m/sec | Probe Angle | : 10° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 42.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|---------------------------------|--|--| | Gain | : 46.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance): 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 46.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 46.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|---------------------------|--------|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status | : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) | : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) | : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) | : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) | : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 45.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm |] | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.O.OO.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.O.OO.AE.O4.06 | Testing Parameters | | | | Gate Measure | | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|---------------------------|--------|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status | : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) | : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) | : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) | : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) | : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |
--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 33.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 0 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 33.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 0 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 33.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 0 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : # ULTRASONIC TEST REPORT DIGISCAN DS-333 DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | Gate Measure | | | | |--------------------|--------------|-------------|--------------|---------------------------|--------|----------------------------------| | Gain | : 33.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | Velosity | : 5910 m/sec | Probe Angle | :0° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | Test Result(Pass/Fail/Other) : If Other, then Remarks : Date and Time..........Dt:27/5/2025 Tm:9:39 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28649 Operator Name/Code: RAMVEER MEENA Defect Location: GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC01 * #### (A-Scan) Data Setup Gain: 39.0 dB RANGE: 2500.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 0.0DEG I NODE ANGLE. U.UDEG THICK: 100.00mm Gate 1 (Status): OFF Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time.......:Dt:27/5/2025 Tm:9:39 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop....: BS PLW Type of Axle/wheel...: WAG9 Axle/wheel No:28649 Operator Name/Code: RAMVEER MEENA Defect Location: GE Test Results (Pass/Fail/other): If other, then Remarks...... Frame No: ASC02 * # (A-Scan) Data Setup Gain: 36.0 dB RANGE: 2500.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8,78us MODE: SINGLE PROBE ANGLE: 0.0DEG THICK: 100.00mm Gate 1 (Status): OFF Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm | Date and TimeDt:27/5/2025 Tm:9:39 | | |--|---------------------| | UFD Model: <u>Arya 1(R)</u> Sr No: <u>AA0362-422</u> 0 | | | Railway/Workshop: BS PLW | | | Type of Axle/wheel: WAG9 | Axle/wheel No:28649 | | Operator Name/Code : RAMVEER MEENA | | | Defect Location GE | | | Test Results (Pass/Fail/other): | | | If other, then Remarks | | | Frame No: ASC03 * | | # (A-Scan) Data Setup Gain: 36.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time.......:Dt:27/5/2025 Tm:9:39 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop....: BS PLW Type of Axle/wheel...: WAG9 Axle/wheel No:28649 Operator Name/Code: RAMVEER MEENA Defect Location: GE Test Results (Pass/Fail/other): If other, then Remarks...... #### (A-Scan) Frame No: ASC04 * Data Setup Gain: 36.0 dB RANGE: 2500.00mm MTL VEL: 5920 M/S REJECT: 12 % PROBE ZERO: 8.78us DELAY: 0.06mm PROBE ANGLE: 0.0DEG THICK: 100.00mm Gate 1 (Status): OFF Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......:Dt:27/5/2025 Tm:9:40 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: <u>BS PLW</u> Type of Axle/wheel....: WAG9 Axle/wheel No:28649 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC05 * # (A-Scan) Data Setup Gain: 50.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 10.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:9:40 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28649 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC06 * #### (A-Scan) Data Setup Gain: 50.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 10.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Operator Name/Code : RAMVEER MEENA Defect Location: GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC07 * # (A-Scan) Data Setup Gain: 49.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 10.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:9:41 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28649 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC08 * #### (A-Scan) Data Setup Gain: 49.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 10.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......:Dt:27/5/2025 Tm:9:43 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28649 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC09 * #### (A-Scan) Data Setup Gain: 48.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......:Dt:27/5/2025 Tm:9:43 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28649 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC10 * #### (A-Scan) Data Setup Gain: 49.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK:
100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......:Dt:27/5/2025 Tm:9:43 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28649 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC11 * #### (A-Scan) Data Setup Gain: 49.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......:Dt:27/5/2025 Tm:9:43 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28649 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC12 * #### (A-Scan) Data Setup Gain: 49.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:9:48 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28649 Operator Name/Code : RAMVEER MEENA Defect Location FE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC13 * #### (A-Scan) Data Setup Gain: 48.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......:Dt:27/5/2025 Tm:9:48 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28649 Operator Name/Code : RAMVEER MEENA Defect Location FE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC14 * #### (A-Scan) Data Setup Gain: 50.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:9:48 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: <u>BS PLW</u> Type of Axle/wheel....: WAG9 Axle/wheel No:28649 Operator Name/Code : RAMVEER MEENA Defect Location FE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC15 * #### (A-Scan) Data Setup Gain: 50.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......:Dt:27/5/2025 Tm:9:48 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28649 Operator Name/Code : RAMVEER MEENA Defect Location FE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC16 * #### (A-Scan) Data Setup Gain: 50.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm | Date and TimeDt:27/5/2025 Tm:9:48 | | |--|---------------------| | UFD Model: Arya 1(R) Sr No:AA0362-4220 | | | Railway/Workshop: BS PLW | | | Type of Axle/wheel: WAG9 | Axle/wheel No:28649 | | Operator Name/Code : RAMVEER MEENA | | | Defect LocationFE | | | Test Results (Pass/Fail/other): | | | If other, then Remarks | | | Frame No: ASC17 * | | # (A-Scan) Data Setup Gain: 38.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm Gate 2(Depth): mm Gate 2(Surface Distance): mm Observation/Remarks (If Any): THICK: 100.00mm | Date and TimeDt:27/5/2025 Tm:9:49 | | |--|---------------------| | UFD Model: <u>Arya 1(R)</u> Sr No: <u>AA0362-422</u> 0 | | | Railway/Workshop: BS PLW | | | Type of Axle/wheel: WAG9 | Axle/wheel No:28649 | | Operator Name/Code : RAMVEER MEENA | | | Defect Location FE | | | Test Results (Pass/Fail/other): | | | If other, then Remarks | | # (A-Scan) Data Setup Gain: 38.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Observation/Remarks (If Any): Frame No: ASC18 * Date and Time.........:Dt:27/5/2025 Tm:9:49 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28649 Operator Name/Code: RAMVEER MEENA Defect Location: FE Frame No: ASC19 * #### (A-Scan) Data Setup Gain: 38.0 dB RANGE: 2500.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 0.0DEG THICK: 100.00mm Gate 1 (Status): OFF Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Frame No: ASC20 * #### (A-Scan) Data Setup Gain: 38.0 dB RANGE: 2500.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 0.0DEG THICK: 100.00mm Gate 1 (Status): OFF Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm | Date and TimeDt:27/5/2025 Tm:9:51 | | |--|---------------------| | UFD Model: Arya 1(R) Sr No:AA0362-4220 | | | Railway/Workshop: BS PLW | | | Type of Axle/wheel: WAG9 | Axle/wheel No:28953 | | Operator Name/Code : RAMVEER MEENA | | | Defect Location GE | | | Test Results (Pass/Fail/other): | | | If other, then Remarks | | | Frame No: ASC21 * | | # (A-Scan) Data Setup Gain: 38.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time.......:Dt:27/5/2025 Tm:9:51 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop....: BS PLW Type of Axle/wheel...: WAG9 Axle/wheel No:28953 Operator Name/Code: RAMVEER MEENA Defect Location: GE Test Results (Pass/Fail/other): If other, then Remarks...... #### (A-Scan) Frame No: ASC22 * Data Setup Gain: 38.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm | Date and TimeDt:27/5/2025 Tm:9:51 | | |--|---------------------| | UFD Model: <u>Arya 1(R)</u> Sr No: <u>AA0362-422</u> 0 | | | Railway/Workshop: BS PLW | | | Type of Axle/wheel: WAG9 | Axle/wheel No:28953 | | Operator Name/Code : RAMVEER MEENA | | | Defect Location GE | | | Test Results (Pass/Fail/other): | | | If other, then Remarks | | | | | Frame No: ASC23 * Observation/Remarks (If Any): # (A-Scan) Data Setup Gain: 38.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm | Date and TimeDt:27/5/2025 Tm:9:51 | | |--|---------------------| | UFD Model: Arya 1(R) Sr No:AA0362-4220 | | | Railway/Workshop: BS PLW | | | Type of Axle/wheel: WAG9 | Axle/wheel No:28953 | | Operator Name/Code : RAMVEER MEENA | | | Defect Location GE | | |
Test Results (Pass/Fail/other): | | | If other, then Remarks | | | Frame No: ASC24 * | | # (A-Scan) Data Setup Gain: 38.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......:Dt:27/5/2025 Tm:9:52 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28953 Operator Name/Code: RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC25 * # (A-Scan) Data Setup Gain: 47.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 10.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:9:52 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28953 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC26 * # (A-Scan) Data Setup Gain: 47.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 10.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......:Dt:27/5/2025 Tm:9:52 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28953 Operator Name/Code: RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC27 * #### (A-Scan) Data Setup Gain: 47.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 10.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:9:53 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: <u>BS PLW</u> Type of Axle/wheel....: WAG9 Axle/wheel No:28953 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC28 * #### (A-Scan) Data Setup Gain: 47.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 10.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:9:53 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28953 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC29 * #### (A-Scan) Data Setup Gain: 50.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 17.5DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......:Dt:27/5/2025 Tm:9:53 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28953 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC30 * #### (A-Scan) Data Setup Gain: 50.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:9:54 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: <u>BS PLW</u> Type of Axle/wheel....: WAG9 Axle/wheel No:28953 Operator Name/Code : RAMVEER MEENA Defect Location GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC31 * #### (A-Scan) Data Setup Gain: 52.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:9:54 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28953 Operator Name/Code : RAMVEER MEENA Defect Location: GE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC32 * # (A-Scan) Data Setup Gain: 52.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:9:59 UFD Model: Arya 1(R) Sr No:AA0362-4220 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28953 Operator Name/Code : RAMVEER MEENA Defect Location FE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC33 * #### (A-Scan) Data Setup Gain: 47.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 17.5DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time.......:Dt:27/5/2025 Tm:9:59 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28953 Operator Name/Code : RAMVEER MEENA Defect Location FE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC34 * #### (A-Scan) Data Setup Gain: 50.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:9:59 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: BS PLW Type of Axle/wheel....: WAG9 Axle/wheel No:28953 Operator Name/Code : RAMVEER MEENA Defect Location FE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC35 * # (A-Scan) Data Setup Gain: 50.0 dB Gate 1 (Status): PLOGIC RANGE: 1000.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 17.5DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Date and Time......Dt:27/5/2025 Tm:9:59 UFD Model: <u>Arya 1(R)</u> Sr No:<u>AA0362-422</u>0 Railway/Workshop.....: <u>BS PLW</u> Type of Axle/wheel....: WAG9 Axle/wheel No:28953 Operator Name/Code : RAMVEER MEENA Defect Location FE Test Results (Pass/Fail/other): If other, then Remarks..... Frame No: ASC36 * #### (A-Scan) Data Setup Gain: 50.0 dB RANGE: 1000.00mm MTL VEL: 5920 M/S REJECT: 12 % DELAY: 0.06mm PROBE ZERO: 8.78us MODE: SINGLE PROBE ANGLE: 17.5DEG THICK: 100.00mm Gate 1 (Status): PLOGIC Gate 2 (Status): OFF Gate 1(Echo height): 0 % Gate 1(Beam Path): 0.00mm Gate 1(Surface Distance): 0.00mm Gate 1(Depth): 0.00mm Gate 2(Echo height): Gate 2(Beam Path): mm Gate 2(Surface Distance): mm Gate 2(Depth): mm | Date and TimeDt:27/5/2025 Tm:10:0 | | |--|---------------------| | UFD Model: Arya 1(R) Sr No:AA0362-4220 | | | Railway/Workshop: BS PLW | | | Type of Axle/wheel: WAG9 | Axle/wheel No:28953 | | Operator Name/Code : RAMVEER MEENA | | | Defect Location FE | | | Test Results (Pass/Fail/other): | | | If other, then Remarks | | | Frame No: ASC37 * | | ### (A-Scan) Data Setup Gain: 38.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Odie Zibepini, min | Date and
TimeDt:27/5/2025 Tm:10:0 | | |--|---------------------| | UFD Model: <u>Arya 1(R)</u> Sr No: <u>AA0362-422</u> 0 | | | Railway/Workshop: BS PLW | | | Type of Axle/wheel: WAG9 | Axle/wheel No:28953 | | Operator Name/Code : RAMVEER MEENA | | | Defect Location FE | | | Test Results (Pass/Fail/other): | | | If other, then Remarks | | ### (A-Scan) Data Setup Gain: 38.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Observation/Remarks (If Any): Frame No: ASC38 * | Date and TimeDt:27/5/2025 Tm:10:0 | | |--|---------------------| | UFD Model: <u>Arya 1(R)</u> Sr No: <u>AA0362-422</u> 0 | | | Railway/Workshop: BS PLW | | | Type of Axle/wheel: WAG9 | Axle/wheel No:28953 | | Operator Name/Code : RAMVEER MEENA | | | Defect LocationFE | | | Test Results (Pass/Fail/other): | | | If other then Remarks | | Frame No: ASC39 * ### (A-Scan) Data Setup Gain: 38.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm | Date and TimeDt:27/5/2025 1m:10:0 | | |--|---------------------| | UFD Model: <u>Arya 1(R)</u> Sr No: <u>AA0362-422</u> 0 | | | Railway/Workshop: BS PLW | | | Type of Axle/wheel: WAG9 | Axle/wheel No:28953 | | Operator Name/Code : RAMVEER MEENA | | | Defect LocationFE | | | Test Results (Pass/Fail/other): | | | If other, then Remarks | | ### (A-Scan) Data Setup Gain: 38.0 dB Gate 1 (Status): OFF RANGE: 2500.00mm Gate 2 (Status): OFF MTL VEL: 5920 M/S Gate 1(Echo height): 0 % REJECT: 12 % Gate 1(Beam Path): 0.00mm DELAY: 0.06mm Gate 1(Surface Distance): 0.00mm PROBE ZERO: 8.78us Gate 1(Depth): 0.00mm MODE: SINGLE Gate 2(Echo height): PROBE ANGLE: 0.0DEG Gate 2(Beam Path): mm THICK: 100.00mm Gate 2(Surface Distance): mm Gate 2(Depth): mm Observation/Remarks (If Any): Frame No: ASC40 * DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 33.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 0 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : **DATE:** 24-May-25 **TIME:** 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 33.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 0 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 33.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 0 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 33.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 0 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 45.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 10° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm |] | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : **DATE:** 24-May-25 **TIME:** 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 45.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 10° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm |] | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 10° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.O.OO.AE.O4.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 10° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : **DATE:** 24-May-25 **TIME:** 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : **DATE:** 24-May-25 **TIME:** 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | |----------|---------------|-------------|----------
---------------------------|--------|----------------------------------|--| | Gain | : 45.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | : 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm |] | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : **DATE:** 24-May-25 **TIME:** 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 42.3 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|---------------------------|--------|--| | Gain | : 42.3 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status | : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) | : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) | : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) | : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) | : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|---------------------------------|--|--| | Gain | : 42.3 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance): 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 42.3 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 32.3 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 0 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 32.3 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 0 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|---------------------------------|--|--| | Gain | : 32.3 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | :0° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance): 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:45 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.O.OO.AE.O4.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 32.3 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 0 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 31.3 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | :0° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 31.3 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | 2500 mm | Mode | : Single | Gate 1
(Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | :0° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 31.3 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | :0° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 31.3 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | :0° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 10° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 10° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 10° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 10° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|---------------------------------|--|--| | Gain | : 45.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance): 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|---------------------------------|--|--| | Gain | : 45.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance): 0 mm | | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | | Testing Paran | neters | | Gate Measure | | | | | |----------|---------------|-------------|----------|---------------------------|--------|----------------------------------|--|--| | Gain | : 45.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | | Delay | : 0 mm |] | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|---------------------------------|--| | Gain | : 45.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance): 0 mm | | | Delay | : 0 mm |] | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface
Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|---------------------------------|--| | Gain | : 45.8 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance): 0 mm | | | Delay | : 0 mm |] | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 45.8 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 1000 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | : 17.5 ° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 34.3 dB | Probe Zero | : 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | :0° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 34.3 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | :0° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 34.3 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | :0° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : DATE: 24-May-25 TIME: 1:44 PM INSTRUMENT VER: 0000 SOFTWARE VER: P.0.00.AE.04.06 | Testing Parameters | | | | Gate Measure | | | | |--------------------|--------------|-------------|----------|---------------------------|--------|----------------------------------|--| | Gain | : 34.3 dB | Probe Zero | 3.8 | G1 Status | : OFF | G2 Status : OFF | | | Range | : 2500 mm | Mode | : Single | Gate 1 (Echo Height) | : 0 % | Gate 2 (Echo Height) : 0 % | | | Velosity | : 5910 m/sec | Probe Angle | :0° | Gate 1 (Beam Path) | : 0 mm | Gate 2 (Beam Path) : 0 mm | | | Reject | 9 % | Thickness | : 100 mm | Gate 1 (Surface Distance) | : 0 mm | Gate 2 (Surface Distance) : 0 mm | | | Delay | : 0 mm | | | Gate 1 (Depth) | : 0 mm | Gate 2 (Depth) : 0 mm | | Test Result(Pass/Fail/Other) : If Other, then Remarks : #### TOP 12 COSTLIEST ITEMS OF WAG9HC LOCO WITH WARRANTY CONDITIONS AS PER TENDERS | S No | PL No | DESCRIPTION | Warranty Period | |------|----------|---|---| | | | | | | 1 | 29741075 | IGBT BASED 3-PHASE DRIVE PROPULSION
EQUIPMENT | 60 months after commissioning or 72 months from date of supply whichever earlier as per special conditions given by CLW | | | | | | | 2 | 29731057 | MAIN TRANSFORMER 7775 KVA TYPE LOT 7500 FOR
WAP7 3- PHASE ELECTRIC LOCOMOTIVE TO CLW
SPECN NO.CLW/ES/3/0660/C | AS PER IRS CONDITIONS OF CONTRACT [i.e. 30 MONTHS FROM THE DATE OF SUPPLY OR 24 MONTHS FROM THE DATE OF COMMISSIONING, WHICHEVER IS EARLIER] WILL BE APPLICABLE. | | | | | | | 3 | 29171064 | COMPLETE SHELL ASSLY (PIPED & PAINTED) FOR WAP-7 LOCO TO CLW SPEC. NO. CLW/MS/3/152 ALT-8 | AS PER IRS CONDITIONS-30 MONTHS FROM THE DATE OF SUPPLY OR 24 MONTHS FROM THE DATE OF COMMISSIONING, WHICHEVER IS EARLIER. | | | | | | | 4 | 29600418 | LOCOMOTIVES TO CLW SPECN. NO. CLW/ES/03/646 ALT-NIL WITH DMW REQUIREMENT OF HARNESSED | As per clause no.9 of CLW Specn. CLW/ES/3/0458 & Clause No.10 of CLW SpecnCLW/ES/3/0459. [18 months after commissioning or 20 months from date of supply for single core & 18 months after commissioning or 24 months from date of supply for multi core] | | | | | | | 7 | 29942007 | 3-PHASE ASYNCHRONOUS TRACTION MOTOR (RESISTANCE RING MECHANICALLY INTERLOCKED TO END PLATE DESIGN ROTOR, SCHEME-II), TYPE 6FRA-6068 FOR WAP-7 ELECTRIC LOCO WITHOUT ACTIVE SPEED SENSOR TO SPECIFICATION NO. 4TMS.096.081 ALT-2 AND STR NO. CLW/2008/3PHTM/STR/0001. | AS PER IRS CONDITIONS OF CONTRACT [i.e. 30 MONTHS FROM THE DATE OF SUPPLY OR 24 MONTHS FROM THE DATE OF COMMISSIONING, WHICHEVER IS EARLIER] WILL BE APPLICABLE. | |---|----------|--|--| | 6 | 29480140 | COMPLETE FILTER CUBICLE ALONG WITH ALL EQUIPMENTS AND CABLING TO DRG./SPEC NO. [1] CLW/ES/3/0193 ALT-F OR LATEST AND CLW DRG. NO. 1209-15-143-004 ALT-10 AND PART DRG./SPEC NO AS PER ANNEXURE-A ATTACHED. | AS PER IRS CONDITIONS OF CONTRACT [i.e. 30 MONTHS FROM THE DATE OF SUPPLY OR 24 MONTHS FROM THE DATE OF COMMISSIONING, WHICHEVER IS EARLIER] WILL BE APPLICABLE. | | 5 | 29180016 | BRAKE CONTROL SYSTEM INCLUDING DRIVER'S
VIGILANCE CONTROL DEVICE TO SET LIST
NO.EL29180016. | As per specification no. CLW/MS/3/001 Alt. 16 i.e. the manufacturer is required to guarantee that the brakevalves/equipment work satisfactorily for a period of five (5) years after commissioning. Any equipment/part which failsduring the guarantee period shall be replaced free of cost by the manufacturer. The replaced components shallfurther be under warranty for five (5) years from the date of their fitment and should the replaced components proveunsatisfactory in service, they shall be replaced by modified and improved components by the supplier free of cost. | | 8 | 29105146 | Bogie Frame Complete for WAP-7 for 3 Phase Co Co Locomotive to CLW specification No. CLW/MS/3/Bogie/003 alt-1 and CLW Drg.No.1209.01.112-202 Alt-Nil | As per clause 16 of Spec.No.CLW/MS/3/Bogie/003 Alt-1. [60 months after commissioning or 72 months from date of supply] | |----|----------|---|--| | 9 | 29171192 | COMPLETE AUXILIARY CUBICLE HB2 ALONG WITH ALL EQUIPMENTS AND CABLING TO CLW SPEC.NO.CLW/ES/3/0192 ALT-E OR LATEST FOR WAP7 LOCO WITH HOTEL LOAD WITH BARE CUBICLE AS PER CLW SPEC.NO.CLW/MS/3/155 ALT-NIL. | AS PER IRS CONDITIONS OF CONTRACT [i.e. 30 MONTHS FROM THE
DATE OF SUPPLY OR 24 MONTHS FROM THE DATE OF COMMISSIONING, WHICHEVER IS EARLIER] WILL BE APPLICABLE. | | 10 | 29171210 | COMPLETE CONTROL CUBICLE SB2 ALONG WITH ALL EQUIPMENTS AND CABLING (EXCLUDING CONTROL ELECTRONICS) TO CLW SPECN. NO. CLW/ES/3/0195/A ALT-H OR LATEST FOR WAP7 LOCO WITH HOTEL LOAD | AS PER IRS CONDITIONS OF CONTRACT [i.e. 30 MONTHS FROM THE DATE OF SUPPLY OR 24 MONTHS FROM THE DATE OF COMMISSIONING, WHICHEVER IS EARLIER] WILL BE APPLICABLE. | | 11 | 29171209 | COMPLETE CONTROL CUBICLE SB1 (PUSH PULL SCHEME COMPLIANT) ALONG WITH ALL EQUIPMENTS AND CABLING (EXCLUDING CONTROL ELECTRONICS) TO CLW SPECN. NO. CLW/ES/3/0194 ALT-G OR LATEST FOR WAP7 LOCO WITH HOTEL LOAD | AS PER IRS CONDITIONS OF CONTRACT [i.e. 30 MONTHS FROM THE DATE OF SUPPLY OR 24 MONTHS FROM THE DATE OF COMMISSIONING, WHICHEVER IS EARLIER] WILL BE APPLICABLE. | | 12 | 29171180 | COMPLETE AUXILIARY CUBICLE HB1 ALONG WITH ALL EQUIPMENTS AND CABLING TO CLW SPEC.NO.CLW/ES/3/0191 ALT-D OR LATEST FOR WAP7 LOCO WITH HOTEL LOAD WITH BARE CUBICLE AS PER CLW SPEC.NO.CLW/MS/3/155 ALT-NIL. | AS PER IRS CONDITIONS OF CONTRACT [i.e. 30 MONTHS FROM THE DATE OF SUPPLY OR 24 MONTHS FROM THE DATE OF COMMISSIONING, WHICHEVER IS EARLIER] WILL BE APPLICABLE. | #### भारत सरकार GOVERNMENT OF INDIA रेल मंत्राल्य #### MINISTRY OF RAILWAYS पटियाला रेलइंजन कारखाना #### **PATIALA LOCOMOTIVE WORKS** Email: dyceeloco.dmw@gmail.com फैक्स/Fax No.: 0175-2397244 फोन/ Phone: 0175- 2396422 मोबाईल: 9779242310 पटियाला, 147003, भारत् PATIALA, 147003, INDIA Date: As signed (An ISO 9001, ISO 14001, ISO 45001 & ISO 50001, 5S & Green Building certified Organization) No. PLW/M/ECS/Tech/Kavach (Through Mail) Sr. Div. Electrical Engineer, Electric Loco Shed, Bhusawal. Email: srdeetrsbslcrly@gmail.com Sub:- Fitment of KAVACH in three Phase Electric Loco. No. 42042 WAG9-HC. Ref:- (i). Director General Stds./Electrical/RDSO letter no. EL/0.1.3/3 dated 21.08.2023. (ii).Director General Stds./Electrical/RDSO letter no. EL/0.1.3/3 dated 26.09.2023 In ref. to the above letter's Loco No. 42042 has been dispatched with fittings for implementation of KAVACH system in locomotive at home shed in Zonal Railway. This Loco was dispatched to ELS/BSL/CR on 22.06.2025. The details of fittings are attached as Annexure-A (pneumatic fittings), Annexure-B (Kavach equipment mounting Brackets) & Annexure-C (Wago with harnessed lay out). This is for your information & necessary action please. Digitally signed by NISHANT BANSIWAL Date: 2025.08.06 (निशांत बंसीवाल) उप मुख्य विद्युत अभियंता/लोको #### प्रतिलिपि:- CEE/Loco & CEE/D&Q, CMM, CELE/CR:- for kind information please Dy CME/Design, Dy. CMM/Depot: for information & necessary action please AEE/LAS, AWM/LFS&ABS, AWM/ECS: for necessary action please #### Loco No. 420 42 | SN | PL No. | Description of item | Qty. | |----|----------|--|---------| | | <u>.</u> | ISOLATING COCK 3/8" (FEMALE) LEGRIS TYPE WITH VENT | 04 nos. | | 1 | 29163341 | ISOLATING COCK 3/8" (FEMALE) LEGRIS TYPE WITHOUT VENT | 02 nos. | | 2 | | TEE UNION 3/8"X3/8"X3/8" BRASS FITTINGS | 02 nos. | | | | MALE CONNECTORS 3/8" TUBE OD X 3/8" BSPT, BRASS FITTINGS | 09 nos. | | | | MALE CONNECTORS 1/2" TUBE OD X 1/2" BSPT, BRASS FITTINGS | 06 nos. | | | | FEMALE CONNECTORS (NYLON TUBE) DIA 6 TUBE X 3/8" BSPP BRASS FITTINGS | 01 no. | | | | MALE CONNECTOR (NYLON TUBE) DIA 6 TUBE X 3/8" BSPP BRASS FITTINGS | 03 nos | | | | FEMALE TEE 3/8" BSPP – BRASS | 06 nos | | 2 | 29611994 | HEX PLUG -3/8" BSPT – BRASS | 02 nos | | | | FEMALE TEE 1/2" BSPP – BRASS | 04 nos | | | | HEX NIPPLE 3/8X3/8" BSPT – BRASS | 04 nos | | | | RED HEX NIPPLE 3/8X1/2" BSPT - BRASS | 02 nos | | | - | HEX PLUG – 1/2" BSPT – BRASS | 04 nos | | | | MALE ELBOW CONNECTORS 3/8" TUBE OD X 3/8) BSPT. BRASS FITTINGS | 02 nos | | 3 | 29170114 | Copper Tube OD 9.52mm (3/8") X 1.245 Mm W.T X 6 Mtr | 1.2Mtr | AWMABS 8 LES SSE/G/ABS | SN | PL No. | Description of item | Quantity | |----|----------|---|----------| | 1. | 29611945 | Mounting bracket arrangement provided for RF Antenna on the roof top of both driver cabs. | 04 nos. | | 2. | | Mounting bracket arrangement provided for GPS/GSM Antenna on the roof top of both driver cabs. | 02 nos. | | 3. | | Protection Guards for RFID reader provided behind the cattle guards of both side. | 04 nos. | | 4. | | Inspection door with latch provided on the both driver desk covers (LP side) in each cab to access isolation cock. | 02 nos. | | 5. | 1 | Cable Entry Plate fitted for routing of cable with RF Antenna & GPS/GSM Antenna bracket. | 06 nos. | | 6. | <u> </u> | WAGO bracket fitted in Machine room at back side of SB-1. | 01 no. | | 7. | - | One circular hole of 80 mm dia. provided in each cabs on LP side behind the driver desk toward the wall for routing of OCIP (DMI) cables. | 02 nos. | | 8. | - 4 | 80 mm holes provided on TM1 and TM6 Junction box inspection cover hole for drawing of RFID reader cables. | 02 nos. | | 9. | - | DIN Rail fitted inside the driver desk (LP Side) | 02 nos. | #### Annexure-C | SN | man PL No. | Description of item | - Mark of the second | Quantity . | |----|------------|--|----------------------|------------| | 1. | 42310301 | Flexible conduit size 25mm ² provided for RF-
Antenna cable layout from CAB-1&2 to Machine | 1, 2 & GPS room. | 06 mtr. | | 2. | 29611982 | Wago terminals in CAB-1&2 (25 nos. in each CA | ∖B). | 50 nos. | | 3. | 29611982 | Wago terminal in Machine room at back side of | SB-1. | 75 nos. | | 4. | | Harness provided from KAVACH SB to SB-1 | | 07 wires | | 5. | - | Harness provided from KAVACH SB to SB-2 | | 05 wires | | 6. | - | Harness provided from KAVACH SB to Pneuma | tic Panel | 12 wires | | 7. | - ` | Harness provided from KAVACH SB to CAB-1 | | 24 wires | | 8. | | Harness provided from KAVACH SB to CAB-2 | | 16 wires | AWMECS SSEIGIECS